Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Košnar, Jiří"
Sort by:
Identifying the richness and evolutionary relationships of Ranunculus sect. Batrachium in its diversity centre in south-western Europe
Aquatic plants are generally attributed to have larger ranges than their terrestrial counterparts, but this knowledge is often hindered by insufficient exploration of their diversity. To fill this gap, we investigated the taxonomically extremely challenging aquatic plant group Ranunculus sect . Batrachium in south-western Europe, which is an important glacial refugium, using flow cytometry, chromosome counting and DNA sequencing (ITS nuclear region and two non-coding plastid regions). In a dataset comprising 587 individuals from 117 localities, we detected 36 cytotypes across seven ploidy levels, which included a considerable proportion of previously unrecognized diversity consisting of three high ploidies (7 x , 10 x , 12 x ), seven cryptic species, two additional unclassifiable biotypes and nine hybrids. Two thirds of the taxa are polyploid, with many species presumed to be of allopolyploid origin. We discovered a remarkably close relationship between the local cytotype of R. peltatus s.l. and the morphologically distinct, widespread and ecologically specialized species R. fluitans ; the latter might have evolved as a result of rapid adaptation to newly colonized river habitats in the early postglacial period. Undeniably, diversity within this group is still incompletely understood and is far more complex than current taxonomic concepts suggest.
Alcobiosis, an algal-fungal association on the threshold of lichenisation
Alcobiosis, the symbiosis of algae and corticioid fungi, frequently occurs on bark and wood. Algae form a layer in or below fungal basidiomata reminiscent of the photobiont layer in lichens. Identities of algal and fungal partners were confirmed by DNA barcoding. Algal activity was examined using gas exchange and chlorophyll fluorescence techniques. Carbon transfer from algae to fungi was detected as 13 C, assimilated by algae, transferred to the fungal polyol. Nine fungal partners scattered across Agaricomycetes are associated with three algae from Trebouxiophycae: Coccomyxa sp. with seven fungal species on damp wood, Desmococcus olivaceus and Tritostichococcus coniocybes , both with a single species on bark and rain-sheltered wood, respectively. The fungal partner does not cause any obvious harm to the algae. Algae enclosed in fungal tissue exhibited a substantial CO 2 uptake, but carbon transfer to fungal tissues was only detected in the Lyomyces-Desmococcus alcobiosis where some algal cells are tightly enclosed by hyphae in goniocyst-like structures. Unlike lichen mycobionts, fungi in alcobioses are not nutritionally dependent on the algal partner as all of them can live without algae. We consider alcobioses to be symbioses in various stages of co-evolution, but still quite different from true lichens.
Fungal root symbionts of high-altitude vascular plants in the Himalayas
Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) form symbiotic relationships with plants influencing their productivity, diversity and ecosystem functions. Only a few studies on these fungi, however, have been conducted in extreme elevations and none over 5500 m a.s.l., although vascular plants occur up to 6150 m a.s.l. in the Himalayas. We quantified AMF and DSE in roots of 62 plant species from contrasting habitats along an elevational gradient (3400–6150 m) in the Himalayas using a combination of optical microscopy and next generation sequencing. We linked AMF and DSE communities with host plant evolutionary history, ecological preferences (elevation and habitat type) and functional traits. We detected AMF in elevations up to 5800 m, indicating it is more constrained by extreme conditions than the host plants, which ascend up to 6150 m. In contrast, DSE were found across the entire gradient up to 6150 m. AMF diversity was unimodally related to elevation and positively related to the intensity of AMF colonization. Mid-elevation steppe and alpine plants hosted more diverse AMF communities than plants from deserts and the subnival zone. Our results bring novel insights to the abiotic and biotic filters structuring AMF and DSE communities in the Himalayas.
Arbuscular mycorrhizal fungal communities of forbs and C3 grasses respond differently to cultivation and elevated nutrients
Arbuscular mycorrhizal fungi (AMF) represent important players in the structure and function of many ecosystems. Yet, we learn about their roles mostly from greenhouse-based experiments, with results subjected to cultivation bias. This study explores multiple aspects of this bias and separates the effect of increased nutrient availability from other cultivation specifics. For 15 grassland plant species from two functional groups (C3 grasses vs dicotyledonous forbs), we compared AMF communities of adults collected from non-manipulated vegetation with those in plants grown in a greenhouse. Nutrient availability was comparable to field conditions or experimentally elevated. We evaluated changes in AMF community composition, diversity, root colonisation, and the averages of functional traits characterising hyphal soil exploration. Additionally, we use the data from the greenhouse experiment to propose a new plant functional trait—the change of AMF colonisation in response to nutrient surplus. The AMF community differed profoundly between field-collected and greenhouse-grown plants, with a larger change of its composition in grass species, and AMF community composition in grasses also responded more to fertilisation than in forbs. Taxonomic and phylogenetic diversity declined more in forbs under cultivation (particularly with elevated nutrients), because in their roots, the AMF taxa from families other than Glomeraceae largely disappeared. A decline in AMF colonisation was not caused by greenhouse cultivation itself but selectively by the elevation of nutrient availability, particularly in grass host species. We demonstrate that the extent of decrease in AMF colonisation with elevated nutrients is a useful plant functional trait explaining an observed response of the plant community to manipulation.
Contrasting effects of host identity, plant community, and local species pool on the composition and colonization levels of arbuscular mycorrhizal fungal community in a temperate grassland
• Arbuscular mycorrhizal fungi (AMFs) are important plant symbionts, but we know little about the effects of plant taxonomic identity or functional group on the AMF community composition. To examine the effects of the surrounding plant community, of the host, and of the AMF pool on the AMF community in plant roots, we manipulated plant community composition in a long-term field experiment. • Within four types of manipulated grassland plots, seedlings of eight grassland plant species were planted for 12 wk, and AMFs in their roots were quantified. Additionally, we characterized the AMF community of individual plots (as their AMF pool) and quantified plot abiotic conditions. • The largest determinant of AMF community composition was the pool of available AMFs, varying at metre scale due to changing soil conditions. The second strongest predictor was the host functional group. The differences between grasses and dicotyledonous forbs in AMF community variation and diversity were much larger than the differences among species within those groups. High cover of forbs in the surrounding plant community had a strong positive effect on AMF colonization intensity in grass hosts. • Using a manipulative field experiment enabled us to demonstrate direct causal effects of plant host and surrounding vegetation.
Host age and surrounding vegetation affect the community and colonization rates of arbuscular mycorrhizal fungi in a temperate grassland
• Arbuscular mycorrhizal fungi (AMF) are important symbionts for the majority of terrestrial vascular plants, yet the drivers of the compositional variation in AMF communities need to be better understood. What effects does the ontogenetic stage of host plants have and do these effects differ between plant functional groups? Are the AMF communities modified by the properties of surrounding vegetation, such as the proportion of different functional groups or nonmycorrhizal plants ? • We addressed these questions in a temperate grassland and studied AMF communities using next-generation sequencing and light microscopy, evaluating their composition, taxonomic, phylogenetic and functional diversity, functional traits and root colonization levels. • We found important differences between AMF communities and their diversity between seedlings and adults which are larger than the differences among host species or between functional groups. The proportion of nonmycorrhizal plants in the surrounding affected AMF community composition and increased its richness. • Our results highlight the need for further investigating the existence of a common mycelial networks. The decision to use seedlings for experimental work can affect the results more than the chosen host species.
Development of 14 Microsatellite Markers in Odontites vernus s.l. (Orobanchaceae) and Cross-Amplification in Related Taxa
Premise of the study: Microsatellite primers were developed for the first time in the root hemiparasite herb Odontites vernus (Orobanchaceae). These markers will be useful to investigate the role of polyploidization in the evolution of this diploid-tetraploid complex, as well as the extent of gene flow between different ploidy levels. Methods and Results: Fourteen polymorphic and reproducible loci were identified and optimized from O. vernus using a microsatellite-enriched library and 454 Junior sequencing. The set of primers amplified di- to pentanucleotide repeats and showed two to 13 alleles per locus. Transferability was tested in 30 taxa (19 belonging to Odontites and 11 from eight other genera of Orobanchaceae tribe Rhinantheae). Conclusions: The results indicate the utility of the newly developed microsatellites in O. vernus and several other species, which will be useful for taxon delimitation and conservation genetics studies.
Comparison of Genetic Structure of Epixylic Liverwort Crossocalyx hellerianus between Central European and Fennoscandian Populations
Patterns of genetic variation and spatial genetic structure (SGS) were investigated in Crossocalyx hellerianus, a strictly epixylic dioicous liverwort (Scapaniaceae s.l., Marchantiophyta). Studied populations were located in Fennoscandia and Central Europe, with localities differing in availability of substrate and the population connectivity, and their populations consequently different in size, density, and prevailing reproductive mode. A set of nine polymorphic microsatellites was successfully developed and used. Identical individuals were only found within populations. Especially in large populations, the majority of the individuals were genetically unique. Resampled number of genotypes, mean number of observed alleles per locus after rarefaction, and Nei's gene diversity in large populations reached high values and ranged between 4.41-4.97, 3.13-4.45, and 0.94-0.99, respectively. On the contrary, the values in small populations were lower and ranged between 1.00-4.42, 1.00-2.73, and 0.00-0.95, respectively. As expected, large populations were found to be more genetically diverse than small populations but relatively big diversity of genotypes was also found in small populations. This indicated that even small populations are important sources of genetic variation in bryophytes and processes causing loss of genetic variation might be compensated by other sources of variability, of which somatic mutations might play an important role. The presence of SGS was discovered in all populations. Large populations possessed less SGS, with individuals showing a pronounced decrease in kinship over 50 cm of distance. Apparent SGS of small populations even at distances up to 16 meters suggests the aggregation of similar genotypes, caused predominantly by the deposition of asexually formed gemmae. Although no strong kinship was detectable at the distances over 16 meters in both small and large populations, identical genotypes were occasionally detected at longer distances (20-80 m), suggesting effective dispersal of asexual propagules.
Asymmetric hybridization in Central European populations of the Dryopteris carthusiana group
Premise Hybridization is a key process in plant speciation. Despite its importance, there is no detailed study of hybridization rates in fern populations. A proper estimate of hybridization rates is needed to understand factors regulating hybridization. Methods We studied hybridization in the European Dryopteris carthusiana group, represented by one diploid and two tetraploid species and their hybrids. We sampled ~100 individuals per population in 40 mixed populations of the D. carthusiana group across Europe. All plants were identified by measuring genome size (DAPI staining) using flow cytometry. To determine the maternal parentage of hybrids, we sequenced the chloroplast region trnL–trnF of all taxa involved. Results We found hybrids in 85% of populations. Triploid D. ×ambroseae occurred in every population that included both parent species and is most abundant when the parent species are equally abundant. By contrast, tetraploid D. ×deweveri was rare (15 individuals total) and triploid D. ×sarvelae was absent. The parentage of hybrid taxa is asymmetric. Despite expectations from previous studies, tetraploid D. dilatata is the predominant male parent of its triploid hybrid. Conclusions This is a thorough investigation of hybridization rates in natural populations of ferns. Hybridization rates differ greatly even among closely related fern taxa. In contrast to angiosperms, our data suggest that hybridization rates are highest in balanced parent populations and support the notion that some ferns possess very weak barriers to hybridization. Our results from sequencing cpDNA challenge established notions about the correlation of ploidy level and mating tendencies.