Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
39
result(s) for
"Koberna, Karel"
Sort by:
DNA Dyes—Highly Sensitive Reporters of Cell Quantification: Comparison with Other Cell Quantification Methods
2021
Cell quantification is widely used both in basic and applied research. A typical example of its use is drug discovery research. Presently, plenty of methods for cell quantification are available. In this review, the basic techniques used for cell quantification, with a special emphasis on techniques based on fluorescent DNA dyes, are described. The main aim of this review is to guide readers through the possibilities of cell quantification with various methods and to show the strengths and weaknesses of these methods, especially with respect to their sensitivity, accuracy, and length. As these methods are frequently accompanied by an analysis of cell proliferation and cell viability, some of these approaches are also described.
Journal Article
Quantification of fixed adherent cells using a strong enhancer of the fluorescence of DNA dyes
2019
Cell quantification is widely used in basic or applied research. The current sensitive methods of cell quantification are exclusively based on the analysis of non-fixed cells and do not allow the simultaneous detection of various cellular components. A fast, sensitive and cheap method of the quantification of fixed adherent cells is described here. It is based on the incubation of DAPI- or Hoechst 33342-stained cells in a solution containing SDS. The presence of SDS results in the quick de-staining of DNA and simultaneously, in an up-to-1,000-fold increase of the fluorescence intensity of the used dyes. This increase can be attributed to the micelle formation of SDS. The method is sufficiently sensitive to reveal around 50–70 human diploid cells. It is compatible with immunocytochemical detections, the detection of DNA replication and cell cycle analysis by image cytometry. The procedure was successfully tested for the analysis of cytotoxicity. The method is suitable for the quantification of cells exhibiting low metabolic activity including senescent cells. The developed procedure provides high linearity and the signal is high for at least 20 days at room temperature. Only around 90 to 120 minutes is required for the procedure’s completion.
Journal Article
DNA Replication: From Radioisotopes to Click Chemistry
2018
The replication of nuclear and mitochondrial DNA are basic processes assuring the doubling of the genetic information of eukaryotic cells. In research of the basic principles of DNA replication, and also in the studies focused on the cell cycle, an important role is played by artificially-prepared nucleoside and nucleotide analogues that serve as markers of newly synthesized DNA. These analogues are incorporated into the DNA during DNA replication, and are subsequently visualized. Several methods are used for their detection, including the highly popular click chemistry. This review aims to provide the readers with basic information about the various possibilities of the detection of replication activity using nucleoside and nucleotide analogues, and to show the strengths and weaknesses of those different detection systems, including click chemistry for microscopic studies.
Journal Article
Cytidine and dCMP Deaminases—Current Methods of Activity Analysis
2025
Cytidine deaminase (CDA) and deoxycytidine monophosphate deaminase (DCTD) play crucial roles in pyrimidine metabolism, affecting DNA synthesis, cell cycle progression, and the efficacy of numerous nucleoside analog-based chemotherapeutics. Given their significance, accurate and sensitive measurement of their enzymatic activity is paramount for both fundamental biochemical research and clinical applications. This review provides a comprehensive overview of the methodologies used to assess CDA and DCTD activity, both established and emerging. We systematically categorize and discuss various approaches, including spectrophotometric, fluorimetric, liquid chromatography-based (Ultraviolet-Visible, fluorescence, and mass spectrometry), radiometric, and cell-based assays. For each method, we present its underlying principles, advantages, and limitations. Furthermore, we draw comparisons across the techniques to highlight their suitability for specific research questions.
Journal Article
The kinetics of uracil-N-glycosylase distribution inside replication foci
2025
Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-
N
-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-
N
-glycosylase distribution several dozens of minutes before end of its replication. The analysis also showed that very popular synchronisation protocols based on the double thymidine block can result in changes in the UNG2 content and uracil excision rate. In response, we propose a new method for the description of the changes of the content and the activity of different cell components during cell cycle without the necessity to use synchronisation protocols.
Journal Article
A new technique for the analysis of metabolic pathways of cytidine analogues and cytidine deaminase activities in cells
2023
Deoxycytidine analogues (dCas) are widely used for the treatment of malignant diseases. They are commonly inactivated by cytidine deaminase (CDD), or by deoxycytidine monophosphate deaminase (dCMP deaminase). Additional metabolic pathways, such as phosphorylation, can substantially contribute to their (in)activation. Here, a new technique for the analysis of these pathways in cells is described. It is based on the use of 5-ethynyl 2′-deoxycytidine (EdC) and its conversion to 5-ethynyl 2′-deoxyuridine (EdU). Its use was tested for the estimation of the role of CDD and dCMP deaminase in five cancer and four non-cancer cell lines. The technique provides the possibility to address the aggregated impact of cytidine transporters, CDD, dCMP deaminase, and deoxycytidine kinase on EdC metabolism. Using this technique, we developed a quick and cheap method for the identification of cell lines exhibiting a lack of CDD activity. The data showed that in contrast to the cancer cells, all the non-cancer cells used in the study exhibited low, if any, CDD content and their cytidine deaminase activity can be exclusively attributed to dCMP deaminase. The technique also confirmed the importance of deoxycytidine kinase for dCas metabolism and indicated that dCMP deaminase can be fundamental in dCas deamination as well as CDD. Moreover, the described technique provides the possibility to perform the simultaneous testing of cytotoxicity and DNA replication activity.
Journal Article
Most Anti-BrdU Antibodies React with 2′-Deoxy-5-Ethynyluridine — The Method for the Effective Suppression of This Cross-Reactivity
2012
5-Bromo-2'-deoxyuridine (BrdU) and 2'-deoxy-5-ethynyluridine (EdU) are widely used as markers of replicated DNA. While BrdU is detected using antibodies, the click reaction typically with fluorescent azido-dyes is used for EdU localisation. We have performed an analysis of ten samples of antibodies against BrdU with respect to their reactivity with EdU. Except for one sample all the others evinced reactivity with EdU. A high level of EdU persists in nuclear DNA even after the reaction of EdU with fluorescent azido-dyes if the common concentration of dye is used. Although a ten-time increase of azido-dye concentration resulted in a decrease of the signal provided by anti-BrdU antibodies, it also resulted in a substantial increase of the non-specific signal. We have shown that this unwanted reactivity is effectively suppressed by non-fluorescent azido molecules. In this respect, we have tested two protocols of the simultaneous localisation of incorporated BrdU and EdU. They differ in the mechanism of the revelation of incorporated BrdU for the reaction with antibodies. The first one was based on the use of hydrochloric acid, the second one on the incubation of samples with copper(I) ions. The use of hydrochloric acid resulted in a significant increase of the non-specific signal. In the case of the second method, no such effect was observed.
Journal Article
A Fatal Combination: A Thymidylate Synthase Inhibitor with DNA Damaging Activity
2015
2'-Deoxy-5-ethynyluridine (EdU) has been previously shown to be a cell poison whose toxicity depends on the particular cell line. The reason is not known. Our data indicates that different efficiency of EdU incorporation plays an important role. The EdU-mediated toxicity was elevated by the inhibition of 2'-deoxythymidine 5'-monophosphate synthesis. EdU incorporation resulted in abnormalities of the cell cycle including the slowdown of the S phase and a decrease in DNA synthesis. The slowdown but not the cessation of the first cell division after EdU administration was observed in all of the tested cell lines. In HeLa cells, a 10 μM EdU concentration led to the cell death in the 100% of cells probably due to the activation of an intra S phase checkpoint in the subsequent S phase. Our data also indicates that this EdU concentration induces interstrand DNA crosslinks in HeLa cells. We suppose that these crosslinks are the primary DNA damage resulting in cell death. According to our results, the EdU-mediated toxicity is further increased by the inhibition of thymidylate synthase by EdU itself at its higher concentrations.
Journal Article
Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2′-deoxyuridine, low concentration of hydrochloric acid and exonuclease III
2017
The approach for the detection of replicational activity in cells using 5-bromo-2'-deoxyuridine, a low concentration of hydrochloric acid and exonuclease III is presented in the study. The described method was optimised with the aim to provide a fast and robust tool for the detection of DNA synthesis with minimal impact on the cellular structures using image and flow cytometry. The approach is based on the introduction of breaks into the DNA by the low concentration of hydrochloric acid followed by the subsequent enzymatic extension of these breaks using exonuclease III. Our data showed that the method has only a minimal effect on the tested protein localisations and is applicable both for formaldehyde- and ethanol-fixed cells. The approach partially also preserves the fluorescence of the fluorescent proteins in the HeLa cells expressing Fluorescent Ubiquitin Cell Cycle Indicator. In the case of the short labelling pulses that disabled the use of 5-ethynyl-2'-deoxyuridine because of the low specific signal, the described method provided a bright signal enabling reliable recognition of replicating cells. The optimized protocol was also successfully tested for the detection of trifluridine, the nucleoside used as an antiviral drug and in combination with tipiracil also for the treatment of some types of cancer.
Journal Article
Looking for ugly ducklings: The role of the stability of BrdU-antibody complex and the improved method of the detection of DNA replication
2017
5-Bromo-2'-deoxyuridine (BrdU) labelling and immunostaining is commonly used for the detection of DNA replication using specific antibodies. Previously, we found that these antibodies significantly differ in their affinity to BrdU. Our present data showed that one of the reasons for the differences in the replication signal is the speed of antibody dissociation. Whereas highly efficient antibodies created stable complexes with BrdU, the low efficiency antibodies were unstable. A substantial loss of the signal occurred within several minutes. The increase of the complex stability can be achieved by i) formaldehyde fixation or ii) a quick reaction with a secondary antibody. These steps allowed the same or even higher signal/background ratio to be reached as in the highly efficient antibodies. Based on our findings, we optimised an approach for the fully enzymatic detection of BrdU enabling the fast detection of replicational activity without a significant effect on the tested proteins or the fluorescence of the fluorescent proteins. The method was successfully applied for image and flow cytometry. The speed of the method is comparable to the approach based on 5-ethynyl-2'-deoxyuridine. Moreover, in the case of short labelling pulses, the optimised method is even more sensitive. The approach is also applicable for the detection of 5-trifluoromethyl-2'-deoxyuridine.
Journal Article