Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Kobylińska, Dagmara"
Sort by:
Evaluation of Colistin Susceptibility of Klebsiella pneumoniae Strains Exposed to Rotating Magnetic Field
Klebsiella pneumoniae, due to its capacity to produce numerous virulence factors and form biofilms, is one of the most significant etiological agents of nosocomial infections. The extensive and often unwarranted use of antibiotic therapy has driven the emergence of various mutations, adaptive mechanisms, and horizontal gene transfer among K. pneumoniae strains, resulting in resistance to most beta-lactam antibiotics, carbapenems, and the last-resort drug—colistin. A promising alternative or adjunctive treatment is the application of rotating magnetic fields (RMFs). The present study aimed to evaluate changes in colistin susceptibility among 20 extended-spectrum beta-lactamases (ESBLs) and 20 K. pneumoniae carbapenemase (KPC)-positive K. pneumoniae strains isolated from hospital infections following exposure to RMF at frequencies of 5 and 50 Hz. Exposure to RMF at 5 Hz resulted in decreased colistin minimum inhibitory concentration (MIC) values in over half of the tested (ESBLs) and (KPC)-positive strains. Additionally, RMF at 50 Hz reduced colistin MIC values in 30% of (ESBL)-positive and 40% of (KPC)-positive strains. Therefore, in the future, RMF may be developed as a supportive therapeutic strategy to improve the efficacy of antibiotics in the treatment of infections caused by multidrug-resistant (MDR) pathogens, including colistin-resistant K. pneumoniae.