Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
39 result(s) for "Kokhanovsky, Alexander A."
Sort by:
First Retrievals of Surface and Atmospheric Properties Using EnMAP Measurements over Antarctica
The paper presents the first retrievals of clean snow properties using spaceborne hyperspectral observations via the Environmental Mapping and Analysis Program (EnMAP). The location close to the Concordia station at the Dome C Plateau (Antarctica) was selected. At this location, the atmospheric effects (except molecular light scattering and absorption) are weak, and the simplified atmospheric correction scheme could be applied. The ice grain size, snow specific surface area, and snow spectral and broadband albedos were retrieved using single-view EnMAP measurements. In addition, we propose a technique to retrieve trace gas concentrations (e.g., water vapor and ozone) from EnMAP observations over the snow surfaces. A close correspondence of satellite and ground-measured parameters was found.
The Determination of the Snow Optical Grain Diameter and Snowmelt Area on the Greenland Ice Sheet Using Spaceborne Optical Observations
The optical diameter of the surface snow grains impacts the amount of energy absorbed by the surface and therefore the onset and magnitude of surface melt. Snow grains respond to surface heating through grain metamorphism and growth. During melt, liquid water between the grains markedly increases the optical grain size, as wet snow grain clusters are optically equivalent to large grains. We present daily surface snow grain optical diameters (dopt) retrieved from the Greenland ice sheet at 1 km resolution for 2017–2019 using observations from Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A. The retrieved dopt are evaluated against 3 years of in situ measurements in Northeast Greenland. We show that higher dopt are indicative of surface melt as calculated from meteorological measurements at four PROMICE automatic weather stations. We deduce a threshold value of 0.64 mm in dopt allowing categorization of the days either as melting or nonmelting. We apply this simple melt detection technique in Northeast Greenland and compare the derived melting areas with the conventional passive microwave MEaSUREs melt flag for June 2019. The two flags show generally consistent evolution of the melt extent although we highlight areas where large grain diameters are strong indicators of melt but are missed by the MEaSUREs melt flag. While spatial resolution of the optical grain diameter-based melt flag is higher than passive microwave, it is hampered by clouds. Our retrieval remains suitable to study melt at a local to regional scales and could be in the future combined with passive microwave melt flags for increased coverage.
A Robust Atmospheric Correction Procedure for Determination of Spectral Reflectance of Terrestrial Surfaces from Satellite Spectral Measurements
In this work, we propose simple and robust technique for the retrieval of underlying surface spectral reflectance using spaceborne observations. It can be used to process both multispectral moderate resolution satellite data and also multi-zone high spatial resolution data. The technique can work automatically for different types of land surfaces without using huge databases accumulated in advance. The new cloud discrimination and retrieval of the water vapor content in atmosphere procedures are presented. The key point of the proposed atmospheric correction technique is the suggested single-wavelength method for determining the atmospheric aerosol optical thickness without reference to a specific type of underlying surface spectrum. The retrievals of spectral reflectance for various land surfaces with developed technique, performed using computer simulation and experimental data, have demonstrated a high retrieval accuracy.
Fast Atmospheric Correction Method for Hyperspectral Data
Atmospheric correction is a necessary step in processing data recorded by spaceborne sensors for cloudless atmosphere, primarily in the visible and near-IR spectral range. In this paper we present a fast and sufficiently accurate method of atmospheric correction based on the analytical solutions of radiative transfer equation (RTE). The proposed analytical equations can be used to calculate the spectrum of outgoing radiation at the top boundary of the cloudless atmosphere. The solution of the inverse problem for finding unknown parameters of the model is carried out by the method of non-linear least squares (Levenberg-Marquardt algorithm) for an individual selected pixel of the image, taking into account the adjacency effects. Using the found parameters of the atmosphere and the average surface reflectance, and also assuming homogeneity of the atmosphere within a certain area of the hyperspectral image (or within the whole frame), the spectral reflectance at the Earth’s surface is calculated for all other pixels. It is essential that the procedure of the numerical simulation using non-linear least squares is based on the analytical solution of the direct transfer problem. This enables fast solution of the inverse problem in a very short calculation time. Testing of the method has been performed using the synthetic outgoing radiation spectra at the top of atmosphere, obtained from the LibRadTran code. In addition, we have used the spectra measured by the Hyperion. A comparison with the results of atmospheric correction in module FLAASH of ENVI package has been performed. Finally, to validate data obtained by our method, a comparative analysis with ground-based measurements of the Radiometric Calibration Network (RadCalNet) was carried out.
Analysis of the Discrete Theory of Radiative Transfer in the Coupled “Ocean–Atmosphere” System: Current Status, Problems and Development Prospects
In this paper, we analyze the current state of the discrete theory of radiative transfer. One-dimensional, three-dimensional and stochastic radiative transfer models are considered. It is shown that the discrete theory provides a unique solution to the one-dimensional radiative transfer equation. All approximate solution techniques based on the discrete ordinate formalism can be derived based on the synthetic iterations, the small-angle approximation, and the matrix operator method. The possible directions for the perspective development of radiative transfer are outlined.
The Broadband Albedo of Snow
The asymptotic radiative transfer theory is used to derive the analytical approximation for the broadband albedo of pure and polluted snow surfaces. The technique for the determination of the effective snow grain size and also the snow specific surface area from the shortwave broadband albedo measurements is proposed.
A Practical Approach to Improve the MODIS MCD43A Products in Snow-Covered Areas
The MODerate Resolution Imaging Spectroradiometer (MODIS) MCD43A products have been extensively applied in the remote sensing field, but recent researchers have demonstrated that these products still had the potential to be further improved by using the latest development of the kernel-driven model [RossThick-LiSparseReciprocal-Snow (RTLSRS)] in snow-covered areas, since the MCD43A product algorithm [RossThick-LiSparseReciprocal (RTLSR)] needed to be improved for the accurate simulation of snow bidirectional reflectance distribution function (BRDF) signatures. In this paper, we proposed a practical approach to improve the MCD43A products, which used the Polarization and Directionality of the Earth's Reflectance (POLDER) observations and random forest algorithm to establish the relationship between the BRDF parameters (MCD43A1) estimated by the RTLSR and RTLSRS models. We applied this relationship to correct the MCD43A1 product and retrieve the corresponding albedo (MCD43A3) and nadir reflectance (MCD43A4). The results obtained highlight several aspects: (a) The proposed approach can perform well in correcting BRDF parameters [root mean square error (RMSE) = ~0.04]. (b) The corrected BRDF parameters were then used to retrieve snow albedo, which matched up quite well with the results of the RTLSRS model. (c) Finally, the snow albedo retrieved by the proposed approach was assessed using ground-based albedo observations. Results indicated that the retrieved snow albedo showed a higher accuracy as compared to the station measurements (RMSE = 0.055, bias = 0.005), which was better than the results of the MODIS albedo product (RMSE = 0.064, bias = −0.018), especially at large angles. These results demonstrated that this proposed approach presented the potential to further improve the MCD43A products in snow-covered areas.
The modern aerosol retrieval algorithms based on the simultaneous measurements of the intensity and polarization of reflected solar light: a review
In this paper the algorithms to retrieve atmospheric aerosol properties using spaceborne observations are reviewed. The main focus is on the algorithms based on simultaneous measurements of the intensity and degree of polarization of reflected solar light at the top-of-atmosphere.
Atmospheric aerosols
The book describes the morphological, physical and chemical properties of aerosols from various natural and anthropogenic sources to help the reader better understand the direct role of aerosol particles in scattering and absorbing short- and long-wave radiation.
DETERMINATION OF ATMOSPHERIC AEROSOL PROPERTIES OVER LAND USING SATELLITE MEASUREMENTS
The reflectance from most surfaces is small in the UV and blue (several percent only). [...] these channels are of particular importance for future atmospheric aerosol satellite missions because the influence of a priori unknown surface contribution is minimal.