Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
57
result(s) for
"Kolthammer, W S"
Sort by:
Experimentally Finding Dense Subgraphs Using a Time-Bin Encoded Gaussian Boson Sampling Device
2022
Gaussian boson sampling is a quantum computing concept based on drawing samples from a multimode nonclassical Gaussian state using photon-number resolving detectors. It was initially posed as a near-term approach to achieve quantum advantage, and several applications have been proposed since, including the calculation of graph features. For the first time, we use a time-bin encoded interferometer to implement Gaussian boson sampling experimentally and extract samples to enhance the search for dense subgraphs in a graph. Our results indicate an improvement over classical methods for subgraphs of sizes three and four in a graph containing ten nodes. In addition, we numerically explore the role of imperfections in the optical circuit and on the performance of the algorithm.
Journal Article
Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory
2015
Broadband quantum memories, used as temporal multiplexers, are a key component in photonic quantum information processing, as they make repeat-until-success strategies scalable. We demonstrate a prototype system, operating on-demand, by interfacing a warm vapour, high time-bandwidth-product Raman memory with a travelling wave spontaneous parametric down-conversion source. We store single photons and observe a clear influence of the input photon statistics on the retrieved light, which we find currently to be limited by noise. We develop a theoretical model that identifies four-wave mixing as the sole important noise source and point towards practical solutions for noise-free operation.
Journal Article
Broadband single-photon-level memory in a hollow-core photonic crystal fibre
by
Sprague, M. R
,
Michelberger, P. S
,
Nunn, J
in
639/624/1075/397
,
639/624/400/1102
,
639/624/400/482
2014
Storing information encoded in light is critical for realizing optical buffers for all-optical signal processing and quantum memories for quantum information processing. These proposals require efficient interaction between atoms and a well-defined optical mode. Photonic crystal fibres can enhance light-matter interactions and have engendered a broad range of nonlinear effects; however, the storage of light has proven elusive. Here, we report the first demonstration of an optical memory in a hollow-core photonic crystal fibre. We store gigahertz-bandwidth light in the hyperfine coherence of caesium atoms at room temperature using a far-detuned Raman interaction. We demonstrate a signal-to-noise ratio of 2.6:1 at the single-photon level and a memory efficiency of 27 ± 1%. Our results demonstrate the potential of a room-temperature fibre-integrated optical memory for implementing local nodes of quantum information networks.
Journal Article
Quantum simulations with multiphoton Fock states
2021
Quantum simulations are becoming an essential tool for studying complex phenomena, e.g. quantum topology, quantum information transfer and relativistic wave equations, beyond the limitations of analytical computations and experimental observations. To date, the primary resources used in proof-of-principle experiments are collections of qubits, coherent states or multiple single-particle Fock states. Here we show a quantum simulation performed using genuine higher-order Fock states, with two or more indistinguishable particles occupying the same bosonic mode. This was implemented by interfering pairs of Fock states with up to five photons on an interferometer, and measuring the output states with photon-number-resolving detectors. Already this resource-efficient demonstration reveals topological matter, simulates non-linear systems and elucidates a perfect quantum transfer mechanism which can be used to transport Majorana fermions.
Journal Article
Memory-assisted decoder for approximate Gottesman-Kitaev-Preskill codes
by
Kolthammer, W S
,
Kwok Ho Wan
,
Neville, Alex
in
Continuity (mathematics)
,
Damping
,
Error correction
2020
We propose a quantum error correction protocol for continuous-variable finite-energy, approximate Gottesman-Kitaev-Preskill (GKP) states undergoing small Gaussian random displacement errors, based on the scheme of Glancy and Knill [Phys. Rev. A {\\bf 73}, 012325 (2006)]. We show that combining multiple rounds of error-syndrome extraction with Bayesian estimation offers enhanced protection of GKP-encoded qubits over comparible single-round approaches. Furthermore, we show that the expected total displacement error incurred in multiple rounds of error followed by syndrome extraction is bounded by \\(2\\sqrt{\\pi}\\). By recompiling the syndrome-extraction circuits, we show that all squeezing operations can be subsumed into auxiliary state preparation, reducing them to beamsplitter transformations and quadrature measurements.
Optical nonclassicality test based on third-order intensity correlations
2018
We develop a nonclassicality criterion for the interference of three delayed, but otherwise identical, light fields in a three-mode Bell interferometer. We do so by comparing the prediction of quantum mechanics with those of a classical framework in which independent sources emit electric fields with random phases. In particular, we evaluate third-order correlations among output intensities as a function of the delays, and show how the presence of a correlation revival for small delays cannot be explained by the classical model of light. The observation of a revival is thus a nonclassicality signature, which can be achieved only by sources with a photon-number statistics that is highly sub-Poissonian. Our analysis provides strong evidence for the nonclassicality of the experiment discussed by Menssen et al. [Menssen et al., Phys. Rev. Lett, 118, 153603 (2017)], and shows how a collective \"triad\" phase affects the interference of any three or more light fields, irrespective of their quantum or classical character.
Quantum simulations with multiphoton Fock states
by
Sturges, T
,
Renema, J J
,
Walmsley, I A
in
Computer simulation
,
Crystal structure
,
Crystallinity
2020
Quantum simulations are becoming an essential tool for studying complex phenomena, e.g. quantum topology, quantum information transfer, and relativistic wave equations, beyond the limitations of analytical computations and experimental observations. To date, the primary resources used in proof-of-principle experiments are collections of qubits, coherent states or multiple single-particle Fock states. Here we show the first quantum simulation performed using genuine higher-order Fock states, with two or more indistinguishable particles occupying the same bosonic mode. This was implemented by interfering pairs of Fock states with up to five photons on an interferometer, and measuring the output states with photon-number-resolving detectors. Already this resource-efficient demonstration reveals new topological matter, simulates non-linear systems and elucidates a perfect quantum transfer mechanism which can be used to transport Majorana fermions.
Pure Single Photons from Scalable Frequency Multiplexing
2019
We demonstrate multiphoton interference using a resource-efficient frequency multiplexing scheme, suitable for quantum information applications that demand multiple indistinguishable and pure single photons. In our source, frequency-correlated photon pairs are generated over a wide range of frequencies by pulsed parametric down conversion. Indistinguishable single photons of a predetermined frequency are prepared using frequency-resolved detection of one photon to control an electro-optic frequency shift applied to its partner. Measured photon statistics show multiplexing increases the probability of delivering a single photon, without a corresponding increase to multiphoton events. Interference of consecutive outputs is used to bound the single-photon purity and demonstrate the non-classical nature of the emitted light.
On-chip III-V monolithic integration of heralded single photon sources and beamsplitters
2018
We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photons, one of which is used to herald the injection of its twin into the beamsplitter. We use this configuration to implement an integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order correlation \\(g^{(2)}_{\\rm her}(0)=0.10 \\pm 0.02\\) that confirms single-photon operation. The demonstrated generation and manipulation of quantum states on a single III-V semiconductor chip opens promising avenues towards real-world applications in quantum information.
Quantum interference enables constant-time quantum information processing
by
Renema, J J
,
Walmsley, I A
,
Eckstein, A
in
Data processing
,
Fast Fourier transformations
,
Fourier transforms
2019
It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis and compression in diagnostics, astronomy, chemistry and broadcasting builds on the discrete Fourier transform. It is implemented with the Fast Fourier Transform (FFT) algorithm that assumes a periodic input of specific lengths, which rarely holds true. A less-known transform, the Kravchuk-Fourier (KT), allows one to operate on finite strings of arbitrary length. It is of high demand in digital image processing and computer vision, but features a prohibitive runtime. Here, we report a one-step computation of a fractional quantum KT. A quantum \\(d\\)-nary (qudit) architecture we use comprises only one gate and offers processing time independent of the input size. The gate may employ a multiphoton Hong-Ou-Mandel effect. Existing quantum technologies may scale it up towards diverse applications.