Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
29
result(s) for
"Koning, Susanne"
Sort by:
Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome
by
Lara-Taranchenko, Yana
,
Merritt, J. Lawrence
,
Ruivenkamp, Claudia A. L.
in
Biomedical and Life Sciences
,
Biomedicine
,
Epilepsy - diagnosis
2021
Purpose
Pathogenic variants in
SETD1B
have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic
SETD1B
sequence variants. This study aims to further delineate the spectrum of the
SETD1B
-related syndrome based on characterizing an expanded patient cohort.
Methods
We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with
SETD1B
sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays.
Results
Our data present evidence for a loss-of-function mechanism of
SETD1B
variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of
SETD1B
variants.
Conclusion
Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the
SETD1B
-related syndrome.
Journal Article
Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome
by
Lara-Taranchenko, Yana
,
Braddock, Stephen R
,
Timms, Andrew E
in
Autism
,
Divergence
,
DNA methylation
2021
ABSTRACT Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay and seizures. To date, clinical features have been described for eleven patients with (likely) pathogenic SETD1B sequence variants. We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Interestingly, males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Finally, despite the possibility of non-redundant contributions of SETD1B and its paralogue SETD1A to epigenetic control, the clinical phenotypes of the related disorders share many similarities, indicating that elucidating shared and divergent downstream targets of both genes will help to understand the mechanism leading to the neurobehavioral phenotypes. Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome. Competing Interest Statement Xiaodong Wang is employee of Cipher Gene, Ltd. Richard E. Person, Kristin G. Monaghan, Amy Crunk, Jennifer Keller-Ramey, Adi Reich and Houda Zghal Elloumi are employees of GeneDx, Inc. The other authors declare no competing interest. Footnotes * ↵* shared first author
Disturbed function of the blood–cerebrospinal fluid barrier aggravates neuro-inflammation
2014
Multiple sclerosis (MS) is a chronic neuro-inflammatory disorder, which is marked by the invasion of the central nervous system by monocyte-derived macrophages and autoreactive T cells across the brain vasculature. Data from experimental animal models recently implied that the passage of leukocytes across the brain vasculature is preceded by their traversal across the blood–cerebrospinal fluid barrier (BCSFB) of the choroid plexus. The correlation between the presence of leukocytes in the CSF of patients suffering from MS and the number of inflammatory lesions as detected by magnetic resonance imaging suggests that inflammation at the choroid plexus contributes to the disease, although in a yet unknown fashion. We here provide first insights into the involvement of the choroid plexus in the onset and severity of the disease and in particular address the role of the tight junction protein claudin-3 (CLDN3) in this process. Detailed analysis of human post-mortem brain tissue revealed a selective loss of CLDN3 at the choroid plexus in MS patients compared to control tissues. Importantly, mice that lack CLDN3 have an impaired BCSFB and experience a more rapid onset and exacerbated clinical signs of experimental autoimmune encephalomyelitis, which coincides with enhanced levels of infiltrated leukocytes in their CSF. Together, this study highlights a profound role for the choroid plexus in the pathogenesis of multiple sclerosis, and implies that CLDN3 may be regarded as a crucial and novel determinant of BCSFB integrity.
Journal Article
Macrophage galactose-type lectin (MGL) is induced on M2 microglia and participates in the resolution phase of autoimmune neuroinflammation
by
Kalay, Hakan
,
de Vries, Helga E.
,
Kooij, Gijs
in
Analysis
,
Animals
,
Asialoglycoproteins - biosynthesis
2019
Background
Multiple sclerosis (MS) involves a misdirected immune attack against myelin in the brain and spinal cord, leading to profound neuroinflammation and neurodegeneration. While the mechanisms of disease pathogenesis have been widely studied, the suppression mechanisms that lead to the resolution of the autoimmune response are still poorly understood. Here, we investigated the role of the C-type lectin receptor macrophage galactose-type lectin (MGL), usually expressed on tolerogenic antigen-presenting cells (APCs), as a negative regulator of autoimmune-driven neuroinflammation.
Methods
We used in silico, immunohistochemical, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry analysis to explore the expression and functionality of MGL in human macrophages and microglia, as well as in MS post-mortem tissue. In vitro, we studied the capacity of MGL to mediate apoptosis of experimental autoimmune encephalomyelitis (EAE)-derived T cells and mouse CD4
+
T cells. Finally, we evaluated in vivo and ex vivo the immunomodulatory potential of MGL in EAE.
Results
MGL plays a critical role in the resolution phase of EAE as MGL1-deficient (
Clec10a
−/−
) mice showed a similar day of onset but experienced a higher clinical score to that of WT littermates. We demonstrate that the mouse ortholog MGL1 induces apoptosis of autoreactive T cells and diminishes the expression of pro-inflammatory cytokines and inflammatory autoantibodies. Moreover, we show that MGL1 but not MGL2 induces apoptosis of activated mouse CD4
+
T cells in vitro. In human settings, we show that MGL expression is increased in active MS lesions and on alternatively activated microglia and macrophages which, in turn, induces the secretion of the immunoregulatory cytokine IL-10, underscoring the clinical relevance of this lectin.
Conclusions
Our results show a new role of MGL-expressing APCs as an anti-inflammatory mechanism in autoimmune neuroinflammation by dampening pathogenic T and B cell responses, uncovering a novel clue for neuroprotective therapeutic strategies with relevance for in MS clinical applications.
Journal Article
P-Glycoprotein Acts as an Immunomodulator during Neuroinflammation
by
de Vries, Helga E.
,
Kooij, Gijs
,
Dijkstra, Christine D.
in
Adaptive immunity
,
Analysis
,
Animal models
2009
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which autoreactive myelin-specific T cells cause extensive tissue damage, resulting in neurological deficits. In the disease process, T cells are primed in the periphery by antigen presenting dendritic cells (DCs). DCs are considered to be crucial regulators of specific immune responses and molecules or proteins that regulate DC function are therefore under extensive investigation. We here investigated the potential immunomodulatory capacity of the ATP binding cassette transporter P-glycoprotein (P-gp). P-gp generally drives cellular efflux of a variety of compounds and is thought to be involved in excretion of inflammatory agents from immune cells, like DCs. So far, the immunomodulatory role of these ABC transporters is unknown.
Here we demonstrate that P-gp acts as a key modulator of adaptive immunity during an in vivo model for neuroinflammation. The function of the DC is severely impaired in P-gp knockout mice (Mdr1a/1b-/-), since both DC maturation and T cell stimulatory capacity is significantly decreased. Consequently, Mdr1a/1b -/- mice develop decreased clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Reduced clinical signs coincided with impaired T cell responses and T cell-specific brain inflammation. We here describe the underlying molecular mechanism and demonstrate that P-gp is crucial for the secretion of pro-inflammatory cytokines such as TNF-alpha and IFN-gamma. Importantly, the defect in DC function can be restored by exogenous addition of these cytokines.
Our data demonstrate that P-gp downmodulates DC function through the regulation of pro-inflammatory cytokine secretion, resulting in an impaired immune response. Taken together, our work highlights a new physiological role for P-gp as an immunomodulatory molecule and reveals a possible new target for immunotherapy.
Journal Article
The Adipocytokine Nampt and Its Product NMN Have No Effect on Beta-Cell Survival but Potentiate Glucose Stimulated Insulin Secretion
by
Engelse, Marten A.
,
Stolz, Katharina
,
Garten, Antje
in
Acute effects
,
Adenylate kinase
,
Adiponectin - metabolism
2013
Obesity is associated with a dysregulation of beta-cell and adipocyte function. The molecular interactions between adipose tissue and beta-cells are not yet fully elucidated. We investigated, whether or not the adipocytokine Nicotinamide phosphoribosyltransferase (Nampt) and its enzymatic product Nicotinamide mononucleotide (NMN), which has been associated with obesity and type 2 diabetes mellitus (T2DM) directly influence beta-cell survival and function.
The effect of Nampt and NMN on viability of INS-1E cells was assessed by WST-1 assay. Apoptosis was measured by Annexin V/PI and TUNEL assay. Activation of apoptosis signaling pathways was evaluated. Adenylate kinase release was determined to assess cytotoxicity. Chronic and acute effects of the adipocytokine Nampt and its enzymatic product NMN on insulin secretion were assessed by glucose stimulated insulin secretion in human islets.
While stimulation of beta-cells with the cytokines IL-1β, TNFα and IFN-γ or palmitate significantly decreased viability, Nampt and NMN showed no direct effect on viability in INS-1E cells or in human islets, neither alone nor in the presence of pro-diabetic conditions (elevated glucose concentrations and palmitate or cytokines). At chronic conditions over 3 days of culture, Nampt and its product NMN had no effects on insulin secretion. In contrast, both Nampt and NMN potentiated glucose stimulated insulin secretion acutely during 1 h incubation of human islets.
Nampt and NMN neither influenced beta-cell viability nor apoptosis but acutely potentiated glucose stimulated insulin secretion.
Journal Article
Cryo-electron microscopy of extracellular vesicles in fresh plasma
2013
Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited.
To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM).
Fresh citrate- and ethylenediaminetetraacetic acid (EDTA)-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM.
EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles). In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25-260 nm). The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET) was employed to determine the 3D structure of platelet secretory granules.
Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.
Journal Article
Cloning and functional complementation of ten Schistosoma mansoni phosphodiesterases expressed in the mammalian host stages
by
Sterk, Geert Jan
,
Paape, Daniel
,
Leurs, Rob
in
3',5'-Cyclic-nucleotide phosphodiesterase
,
Animals
,
Biology
2020
Only a single drug against schistosomiasis is currently available and new drug development is urgently required but very few drug targets have been validated and characterised. However, regulatory systems including cyclic nucleotide metabolism are emerging as primary candidates for drug discovery. Here, we report the cloning of ten cyclic nucleotide phosphodiesterase (PDE) genes of S. mansoni, out of a total of 11 identified in its genome. We classify these PDEs by homology to human PDEs. Male worms displayed higher expression levels for all PDEs, in mature and juvenile worms, and schistosomula. Several functional complementation approaches were used to characterise these genes. We constructed a Trypanosoma brucei cell line in which expression of a cAMP-degrading PDE complements the deletion of TbrPDEB1/B2. Inhibitor screens of these cells expressing only either SmPDE4A, TbrPDEB1 or TbrPDEB2, identified highly potent inhibitors of the S. mansoni enzyme that elevated the cellular cAMP concentration. We further expressed most of the cloned SmPDEs in two pde1Δ/pde2Δ strains of Saccharomyces cerevisiae and some also in a specialised strain of Schizosacharomyces pombe. Five PDEs, SmPDE1, SmPDE4A, SmPDE8, SmPDE9A and SmPDE11 successfully complemented the S. cerevisiae strains, and SmPDE7var also complemented to a lesser degree, in liquid culture. SmPDE4A, SmPDE8 and SmPDE11 were further assessed in S. pombe for hydrolysis of cAMP and cGMP; SmPDE11 displayed considerable preferrence for cGMP over cAMP. These results and tools enable the pursuit of a rigorous drug discovery program based on inhibitors of S. mansoni PDEs.
Journal Article
AAV-Mediated Gene Transfer of the Obesity-Associated Gene Etv5 in Rat Midbrain Does Not Affect Energy Balance or Motivated Behavior
by
Adan, Roger A. H.
,
Boender, Arjen J.
,
la Fleur, Susanne E.
in
Analysis
,
Animals
,
Behavior, Animal
2014
Several genome-wide association studies have implicated the transcription factor E-twenty- six version 5 (Etv5) in the regulation of body mass index. Further substantiating the role of Etv5 in feeding behavior are the findings that targeted disruption of Etv5 in mice leads to decreased body weight gain and that expression of Etv5 is decreased in the ventral tegmental area and substantia nigra pars compacta (VTA/SNpc) after food restriction. As Etv5 has been suggested to influence dopaminergic neurotransmission by driving the expression of genes that are responsible for the synthesis and release of dopamine, we investigated if expression levels of Etv5 are dependent on nutritional state and subsequently influence the expression levels of tyrosine hydroxylase. While it was shown that Etv5 expression in the VTA/SNpc increases after central administration of leptin and that Etv5 was able to drive expression of tyrosine hydroxylase in vitro, AAV-mediated gene transfer of Etv5 into the VTA/SNpc of rats did not alter expression of tyrosine hydroxylase in vivo. Moreover, AAV-mediated gene transfer of Etv5 in the VTA/SNpc did not affect measures of energy balance or performances in a progressive ratio schedule. Thus, these data do not support a role for increased expression of Etv5 in the VTA/SNpc in the regulation of feeding behavior.
Journal Article
DNA hypermethylation analysis in sputum of asymptomatic subjects at risk for lung cancer participating in the NELSON trial: argument for maximum screening interval of 2 years
2017
AimsLung cancer is the major contributor to cancer mortality due to metastasised disease at time of presentation. The current study investigated DNA hypermethylation of biomarkers RASSF1A, APC, cytoglobin, 3OST2, FAM19A4, PHACTR3 and PRDM14 in sputum of asymptomatic high-risk individuals from the NELSON lung cancer low-dose spiral CT screening trial to detect lung cancer at preclinical stage.MethodsSubjects were selected with (i) lung cancer in follow-up (cases; n=65), (ii) minor cytological aberrations (controls; n=120) and (iii) a random selection of subjects without cytological aberrations (controls; n=99). Median follow-up time for controls was 80 months. Cut-off values were based on high specificity to assess diagnostic value of the biomarkers.ResultsRASSF1A may denote presence of invasive cancer because of its high specificity (93% (95% CI 89% to 96%); sensitivity 17% (95% CI 4% to 31%), with best performance in a screening interval of 2 years. The panel of RASSF1A, 3OST2 and PRDM14 detected 28% (95% CI 11% to 44%) of lung cancer cases within 2 years, with specificity of 90% (95% CI 86% to 94%). Sputum cytology did not detect any lung cancers.ConclusionsIn a lung cancer screening setting with maximum screening interval of 2 years, DNA hypermethylation analysis in sputum may play a role in the detection of preclinical disease, but complementary diagnostic markers are needed to improve sensitivity.
Journal Article