Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Kononets, Mikhail"
Sort by:
Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA
Hypoxia hampers eutrophication reduction efforts by enabling high nutrient fluxes from sediment to bottom waters. Oxygenation of hypoxic water bodies is often proposed to reduce benthic ammonium and phosphate release. This study investigates the functional response of benthic nitrate-reducing processes to a long-term engineered oxygenation effort in a density-stratified fjord with euxinic bottom waters. Oxygenation was achieved by mixing surface water with deep, euxinic water, which increased oxygen and nitrate concentrations in the deep water column. The presence of nitrate instigated benthic nitrate reduction in the newly oxidized sediments by equally stimulating denitrification and dissimilatory nitrate reduction to ammonium (DNRA). DNRA and total nitrate reduction rates, as well as the contribution of DNRA to total nitrate reduction, decreased with increasing exposure time of the sediments to oxygen. The relative importance of DNRA as a nitrate sink was correlated to nitrate concentrations, with more nitrate being reduced to ammonium at higher bottom water nitrate concentrations. Overall, engineered oxygenation decreased the net efflux of dissolved inorganic nitrogen from the sediments by stimulating net nitrate removal through denitrification.
Phosphorus recycling in sediments of the central Baltic Sea
Benthic fluxes of phosphorus (P) were measured in situ in the Eastern Gotland Basin (EGB), central Baltic Sea, using benthic landers. A total of 40 flux measurements of dissolved inorganic P (DIP) on 13 stations at water depths ranging 30–210 m and under different oxygen regimes were carried out on three cruises during three consecutive years (2008–2010) in August–September. Our study is the first to report in situ DIP fluxes in the Baltic proper, and it provides the most comprehensive dataset of benthic fluxes of DIP and dissolved organic P (DOP) in the Baltic proper existing to date. DIP fluxes increased with increasing water depth and with decreasing bottom water oxygen concentration. Average DIP fluxes were calculated for oxic bottom water conditions (− 0.003 0.040 mmol m−2 d−1), hypoxic conditions (0.027 0.067 mmol m−2 d−1) and anoxic conditions (0.376 0.214 mmol m−2 d−1). The mean DIP flux at anoxic bottoms was higher than previous estimates based on ex situ measurements of pore water gradients. The DIP flux was positively correlated with the organic carbon inventory of sediment, and the benthic flux of dissolved inorganic carbon (DIC) at anoxic stations, but these variables were uncorrelated at oxic stations. The positive correlation between DIP and DIC fluxes suggests that the benthic DIP efflux from anoxic bottoms in the Baltic Proper is mainly controlled by rates of deposition and degradation of organic matter. The flux from anoxic sediment was very P rich in relation to both C and nitrogen (N). The average C : P ratio in fluxes at anoxic accumulation bottoms was 69 15, which is well below the Redfield C : P ratio of 106 : 1. At oxic stations, however, the C : P flux ratio was much higher than the Redfield ratio, consistent with well-known P retention mechanisms associated with iron and bacteria in oxidised sediment. Using a benthic mass balance approach, a burial efficiency estimate of 0.2–12% was calculated for the anoxic part of the EGB, which suggests that anoxic Baltic sediments are very efficient in recycling deposited P. Based on the measured fluxes and the average areal extent of anoxic bottoms during years 1999–2006, an internal DIP load of 152 kton yr−1 was calculated. This is almost 9 times higher than the average external total phosphorus (TP) supply to the Baltic proper during the same period. This comparison clearly highlights the dominance of internally regenerated P as a DIP source in the Baltic Sea.
Deep-water inflow event increases sedimentary phosphorus release on a multi-year scale
Phosphorus fertilisation (eutrophication) is expanding oxygen depletion in coastal systems worldwide. Under low-oxygen bottom water conditions, phosphorus release from the sediment is elevated, which further stimulates primary production. It is commonly assumed that re-oxygenation could break this “vicious cycle” by increasing the sedimentary phosphorus retention. Recently, a deep-water inflow into the Baltic Sea created a natural in situ experiment that allowed us to investigate if temporary re-oxygenation stimulates sedimentary retention of dissolved inorganic phosphorus (DIP). Surprisingly, during this 3-year study, we observed a transient but considerable increase, rather than a decrease, in the sediment efflux of DIP and other dissolved biogenic compounds. This suggested that the oxygenated inflow elevated the organic matter degradation in the sediment, likely due to an increase in organic matter supply to the deeper basins, potentially combined with a transient stimulation of the mineralisation efficiency. As a result, the net sedimentary DIP release per m2 was 56 %–112 % higher over the years following the re-oxygenation than before. In contrast to previous assumptions, our results show that inflows of oxygenated water to anoxic bottom waters can increase the sedimentary phosphorus release.
The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study
Over the last decades, the impact of human activities on the global nitrogen (N) cycle has drastically increased. Consequently, benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while in oligotrophic systems its understanding is still scarce. Here we report on benthic solute fluxes and on rates of denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) studied by in situ incubations with benthic chamber landers during two cruises to the Gulf of Bothnia (GOB), a cold, oligotrophic basin located in the northern part of the Baltic Sea. Rates of N burial were also inferred to investigate the fate of fixed N in these sediments. Most of the total dissolved fixed nitrogen (TDN) diffusing to the water column was composed of organic N. Average rates of dinitrogen (N2) production by denitrification and anammox (range: 53–360 µmol N m−2 day−1) were comparable to those from Arctic and subarctic sediments worldwide (range: 34–344 µmol N m−2 day−1). Anammox accounted for 18–26 % of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore water suggested that denitrification and DNRA were driven by organic matter oxidation rather than chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one-third to the TDN efflux and accounted, on average, for 45 % of total nitrate reduction. At the offshore stations, the proportion of DNRA in relation to denitrification was lower (0–16 % of total nitrate reduction). Median value and range of benthic DNRA rates from the GOB were comparable to those from the southern and central eutrophic Baltic Sea and other temperate estuaries and coasts in Europe. Therefore, our results contrast with the view that DNRA is negligible in cold and well-oxygenated sediments with low organic carbon loading. However, the mechanisms behind the variability in DNRA rates between our sites were not resolved. The GOB sediments were a major source (237 kt yr−1, which corresponds to 184 % of the external N load) of fixed N to the water column through recycling mechanisms. To our knowledge, our study is the first to document the simultaneous contribution of denitrification, DNRA, anammox, and TDN recycling combined with in situ measurements.
An Experiment with Forced Oxygenation of the Deepwater of the Anoxic By Fjord, Western Sweden
In a 2.5-year-long environmental engineering experiment in the By Fjord, surface water was pumped into the deepwater where the frequency of deepwater renewals increased by a factor of 10. During the experiment, the deepwater became long-term oxic, and nitrate became the dominating dissolved inorganic nitrogen component. The amount of phosphate in the water column decreased by a factor of 5 due to the increase in flushing and reduction in the leakage of phosphate from the sediments when the sediment surface became oxidized. Oxygenation of the sediments did not increase the leakage of toxic metals and organic pollutants. The bacterial community was the first to show changes after the oxygenation, with aerobic bacteria also thriving in the deepwater. The earlier azoic deepwater bottom sediments were colonized by animals. No structural difference between the phytoplankton communities in the By Fjord and the adjacent Havsten Fjord, with oxygenated deepwater, could be detected during the experiment.
In situ-measured benthic fluxes of dissolved inorganic phosphorus in the Baltic Sea
Sedimentary recycling of phosphorus is a key aspect of eutrophication. Here, we present data on benthic fluxes of dissolved inorganic phosphorus (DIP) from the Baltic Sea, an area with a long eutrophication history. The presented dataset contains 498 individual fluxes measured in situ with three types of benthic chamber landers at 59 stations over 20 years, and data cover most of the Baltic Sea subbasins (Hylén et al., 2025, https://doi.org/10.5281/zenodo.14812160). The dataset further contains information about bottom-water dissolved oxygen (O2) concentrations, sedimentary organic carbon (OC) content and sediment type. The DIP fluxes differ considerably between basins depending on OC loading and the level of O2 depletion and generally increase from the coast to the central basins. Several stations have been visited on multiple occasions, also at times with different O2 concentrations, which enables investigation of the immediate effects of shifting bottom-water O2 concentrations on the benthic DIP release. The Baltic Sea-wide benthic DIP release is estimated to be 389–484 kton yr−1 based on a data integration based on sediment type and O2 conditions during three years with varying extents of hypoxia and anoxia (2004, 2013 and 2018). The dataset reveals a lack of flux measurements in winter months, coastal areas, and sandy and coarse sediments; these should be targeted in future studies. Overall, intercomparisons between samplings and landers as well as rigorous data evaluation show that the data are of high quality. As such, this data set will, alone and together with other environmental data, be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Influence of Natural Oxygenation of Baltic Proper Deep Water on Benthic Recycling and Removal of Phosphorus, Nitrogen, Silicon and Carbon
At the end of 2014, a major Baltic inflow (MBI) brought oxygenated, salty water into the Baltic proper and reached the long-term anoxic Eastern Gotland Basin (EGB) by March 2015. In July 2015, we measured benthic fluxes of phosphorus (P), nitrogen (N) and silicon (Si) nutrients and dissolved inorganic carbon (DIC) in situ using an autonomous benthic lander at deep sites (170-210 m) in the EGB, where the bottom water oxygen concentration was 30-45 µM. The same in situ methodology was used to measure benthic fluxes at the same sites in 2008-2010, but then under anoxic conditions. The high efflux of phosphate under anoxic conditions became lower upon oxygenation, and turned into an influx in about 50 % of the flux measurements. The C:P and N:P ratios of the benthic solute flux changed from clearly below the Redfield ratio (on average about 70 and 3-4, respectively) under anoxia to approaching or being well above the Redfield ratio upon oxygenation. These observations demonstrate retention of P in newly oxygenated sediments. We found no significant effect of oxygenation on the benthic ammonium, silicate and DIC flux. We also measured benthic denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) rates at the same sites using isotope-pairing techniques. The bottom water of the long-term anoxic EGB contained less than 0.5 µM nitrate in 2008-2010, but the oxygenation event created bottom water nitrate concentrations of about 10 µM in July 2015 and the benthic flux of nitrate was consistently directed into the sediment. Nitrate reduction to both dinitrogen gas (denitrification) and ammonium (DNRA) was initiated in the newly oxygenated sediments, while anammox activity was negligible. We estimated the influence of this oxygenation event on the magnitudes of the integrated benthic P flux (the internal P load) and the fixed N removal through benthic and pelagic denitrification by comparing with a hypothetical scenario without the MBI. Our calculations suggest that the oxygenation triggered by the MBI in July 2015, extrapolated to the basin-wide scale of the Baltic proper, decreased the internal P load by 23% and increased the total (benthic plus pelagic) denitrification by 18%.
High methane emissions from an anoxic fjord driven by mixing and oxygenation
Oceanic methane (CH4) budgets lack data from high‐latitude fjords that often behave as intermittently anoxic ecosystems with potentially high methane emissions. We conducted 15 expeditions and 49 in situ lander deployments in an anoxic Scandinavian fjord between 2009 and 2021. Benthic fluxes were highest at the deepest anoxic site (average 516 μmol CH4 m−2 d−1), supporting bottom water methane exceeding 5000 nM. Natural and engineered mixing events displaced methane‐rich bottom waters, enhancing upper water concentrations and driving high sea–air flux reaching 641 μmol CH4 m−2 d−1. Mixing also reduced pelagic methane oxidation from 70% to 20% of all methane sources into the fjord. Upscaling of literature fluxes combined with our results suggests that fjords globally emit 1.0 ± 0.8 Tg CH4 yr−1. Despite their small global area, fjords are hotspots of methane release. We suggest that ongoing deoxygenation and global change will enhance methane emissions from fjords.
Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon
In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX (\"In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies\", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
High methane emissions from an anoxic fjord driven by mixing and oxygenation
Oceanic methane (CH4) budgets lack data from high-latitude fjords that often behave as intermittently anoxic ecosystems with potentially high methane emissions. We conducted 15 expeditions and 49 in situ lander deployments in an anoxic Scandinavian fjord between 2009 and 2021. Benthic fluxes were highest at the deepest anoxic site (average 516μmol CH4 m−2 d−1), supporting bottom water methane exceeding 5000nM. Natural and engineered mixing events displaced methane-rich bottom waters, enhancing upper water concentrations and driving high sea–air flux reaching 641μmol CH4 m−2 d−1. Mixing also reduced pelagic methane oxidation from 70% to 20% of all methane sources into the fjord. Upscaling of literature fluxes combined with our results suggests that fjords globally emit 1.0±0.8 Tg CH4 yr−1. Despite their small global area, fjords are hotspots of methane release. We suggest that ongoing deoxygenation and global change will enhance methane emissions from fjords.