Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
59 result(s) for "Konopka, Paul"
Sort by:
From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations
The European Centre for Medium-Range Weather Forecasts' (ECMWF's) next-generation reanalysis ERA5 provides many improvements, but it also confronts the community with a “big data” challenge. Data storage requirements for ERA5 increase by a factor of ∼80 compared with the ERA-Interim reanalysis, introduced a decade ago. Considering the significant increase in resources required for working with the new ERA5 data set, it is important to assess its impact on Lagrangian transport simulations. To quantify the differences between transport simulations using ERA5 and ERA-Interim data, we analyzed comprehensive global sets of 10-day forward trajectories for the free troposphere and the stratosphere for the year 2017. The new ERA5 data have a considerable impact on the simulations. Spatial transport deviations between ERA5 and ERA-Interim trajectories are up to an order of magnitude larger than those caused by parameterized diffusion and subgrid-scale wind fluctuations after 1 day and still up to a factor of 2–3 larger after 10 days. Depending on the height range, the spatial differences between the trajectories map into deviations as large as 3 K in temperature, 30 % in specific humidity, 1.8 % in potential temperature, and 50 % in potential vorticity after 1 day. Part of the differences between ERA5 and ERA-Interim is attributed to the better spatial and temporal resolution of the ERA5 reanalysis, which allows for a better representation of convective updrafts, gravity waves, tropical cyclones, and other meso- to synoptic-scale features of the atmosphere. Another important finding is that ERA5 trajectories exhibit significantly improved conservation of potential temperature in the stratosphere, pointing to an improved consistency of ECMWF's forecast model and observations that leads to smaller data assimilation increments. We conducted a number of downsampling experiments with the ERA5 data, in which we reduced the numbers of meteorological time steps, vertical levels, and horizontal grid points. Significant differences remain present in the transport simulations, if we downsample the ERA5 data to a resolution similar to ERA-Interim. This points to substantial changes of the forecast model, observations, and assimilation system of ERA5 in addition to improved resolution. A comparison of two Lagrangian trajectory models allowed us to assess the readiness of the codes and workflows to handle the comprehensive ERA5 data and to demonstrate the consistency of the simulation results. Our results will help to guide future Lagrangian transport studies attempting to navigate the increased computational complexity and leverage the considerable benefits and improvements of ECMWF's new ERA5 data set.
Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016
The stratospheric circulation determines the transport and lifetime of key trace gases in a changing climate, including water vapor and ozone, which radiatively impact surface climate. The unusually warm El Niño–Southern Oscillation (ENSO) event aligned with a disrupted Quasi-Biennial Oscillation (QBO) caused an unprecedented perturbation to this circulation in 2015–2016. Here, we quantify the impact of the alignment of these two phenomena in 2015–2016 on lower stratospheric water vapor and ozone from satellite observations. We show that the warm ENSO event substantially increased water vapor and decreased ozone in the tropical lower stratosphere. The QBO disruption significantly decreased global lower stratospheric water vapor and tropical ozone from early spring to late autumn. Thus, this QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the warm ENSO event with westerly QBO in early boreal winter. Our results suggest that the interplay of ENSO events and QBO phases will be crucial for the distributions of radiatively active trace gases in a changing future climate, when increasing El Niño-like conditions and a decreasing lower stratospheric QBO amplitude are expected.
How robust are stratospheric age of air trends from different reanalyses?
An accelerating Brewer–Dobson circulation (BDC) is a robust signal of climate change in model predictions but has been questioned by trace gas observations. We analyse the stratospheric mean age of air and the full age spectrum as measures for the BDC and its trend. Age of air is calculated using the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by ERA-Interim, JRA-55 and MERRA-2 reanalysis data to assess the robustness of the representation of the BDC in current generation meteorological reanalyses. We find that the climatological mean age significantly depends on the reanalysis, with JRA-55 showing the youngest and MERRA-2 the oldest mean age. Consideration of the age spectrum indicates that the older air for MERRA-2 is related to a stronger spectrum tail, which is likely associated with weaker tropical upwelling and stronger recirculation. Seasonality of stratospheric transport is robustly represented in reanalyses, with similar mean age variations and age spectrum peaks. Long-term changes from 1989 to 2015 turn out to be similar for the reanalyses with mainly decreasing mean age accompanied by a shift of the age spectrum peak towards shorter transit times, resembling the forced response in climate model simulations to increasing greenhouse gas concentrations. For the shorter periods, 1989–2001 and 2002–2015, the age of air changes are less robust. Only ERA-Interim shows the hemispheric dipole pattern in age changes from 2002 to 2015 as viewed by recent satellite observations. Consequently, the representation of decadal variability of the BDC in current generation reanalyses appears less robust and is a major uncertainty of modelling the BDC.
Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products
Stratospheric water vapor (SWV) plays important roles in the radiation budget and ozone chemistry and is a valuable tracer for understanding stratospheric transport. Meteorological reanalyses provide variables necessary for simulating this transport; however, even recent reanalyses are subject to substantial uncertainties, especially in the stratosphere. It is therefore necessary to evaluate the consistency among SWV distributions simulated using different input reanalysis products. In this study, we evaluate the representation of SWV and its variations on multiple timescales using simulations over the period 1980–2013. Our simulations are based on the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by horizontal winds and diabatic heating rates from three recent reanalyses: ERA-Interim, JRA-55 and MERRA-2. We present an intercomparison among these model results and observationally based estimates using a multiple linear regression method to study the annual cycle (AC), the quasi-biennial oscillation (QBO), and longer-term variability in monthly zonal-mean H2O mixing ratios forced by variations in the El Niño–Southern Oscillation (ENSO) and the volcanic aerosol burden. We find reasonable consistency among simulations of the distribution and variability in SWV with respect to the AC and QBO. However, the amplitudes of both signals are systematically weaker in the lower and middle stratosphere when CLaMS is driven by MERRA-2 than when it is driven by ERA-Interim or JRA-55. This difference is primarily attributable to relatively slow tropical upwelling in the lower stratosphere in simulations based on MERRA-2. Two possible contributors to the slow tropical upwelling in the lower stratosphere are suggested to be the large long-wave cloud radiative effect and the unique assimilation process in MERRA-2. The impacts of ENSO and volcanic aerosol on H2O entry variability are qualitatively consistent among the three simulations despite differences of 50 %–100 % in the magnitudes. Trends show larger discrepancies among the three simulations. CLaMS driven by ERA-Interim produces a neutral to slightly positive trend in H2O entry values over 1980–2013 (+0.01 ppmv decade−1), while both CLaMS driven by JRA-55 and CLaMS driven by MERRA-2 produce negative trends but with significantly different magnitudes (−0.22 and −0.08 ppmv decade−1, respectively).
The Long-Term Trends and Interannual Variability in Surface Ozone Levels in Beijing from 1995 to 2020
Tropospheric ozone is an important atmospheric pollutant as well as an efficient greenhouse gas. Beijing is one of the cities with the most serious ozone pollution. However, long-term date of observed ozone in Beijing are limited. In this paper, we combine the measurements of the In-service Aircraft for a Global Observing System (IAGOS), ozonesonde observations as well as the recently available ozone monitoring network observations to produce a unique data record of surface ozone (at 14:00 Beijing time) in Beijing from 1995 to 2020. Using this merged dataset, we investigate the variability in surface ozone in Beijing on multiple timescales. The long-term change is primarily characterized by a sudden drop in 2011–2012 with an insignificant linear trend during the full period. Based on CAM-chem model simulations, meteorological factors played important roles in the 2011–2012 ozone drop. Before and after this sudden drop, ozone levels in Beijing increased significantly by 0.42 ± 0.27 ppbv year−1 before 2011 and 0.43 ± 0.41 ppbv year−1 after 2013. We also found a substantial increase in the amplitude of the ozone annual cycle in Beijing, which has not been documented in previous studies. This is consistent with ozone increases in summer and ozone decreases in winter. In addition, the results by the Ensemble Empirical Mode Decomposition (EEMD) analysis indicate significant interannual variations in ozone levels in Beijing with different time oscillation periods, which may be associated with natural variabilities and subsequent changes in meteorological conditions.
Multi-decadal variability controls short-term stratospheric water vapor trends
Stratospheric water vapor increases are expected in response to greenhouse gas-forced climate warming, and these changes act as a positive feedback to surface climate. Previous efforts at inferring trends from the 3–4 decade-long observational stratospheric water vapor record have yielded conflicting results. Here we show that a robust multi-decadal variation of water vapor concentrations exists in most parts of the stratosphere based on satellite observations and atmospheric model simulations, which clearly divides the past 40 years into two wet decades (1986–1997; 2010–2020) and one dry decade (1998–2009). This multi-decadal variation, especially pronounced in the lower to middle stratosphere and in the northern hemisphere, is associated with decadal temperature anomalies (±0.2 K) at the cold point tropopause and a hemispheric asymmetry in changes of the Brewer-Dobson circulation modulating methane oxidation. Multi-decadal variability must be taken into account when evaluating stratospheric water vapor trends over recent decades.
Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere
Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i) into the tropical stratosphere (tropical pipe), and (ii) into the Northern Hemisphere (NH) extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN) and carbon monoxide (CO) observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.
Lagrangian transport simulations using the extreme convection parameterization: an assessment for the ECMWF reanalyses
Atmospheric convection plays a key role in tracer transport from the planetary boundary layer to the free troposphere. Lagrangian transport simulations driven by meteorological fields from global models or reanalysis products, such as the European Centre for Medium-Range Weather Forecasts' (ECMWF's) ERA5 and ERA-Interim reanalysis, typically lack proper explicit representations of convective updrafts and downdrafts because of the limited spatiotemporal resolution of the meteorology. Lagrangian transport simulations for the troposphere can be improved by applying parameterizations to better represent the effects of unresolved convective transport in the global meteorological reanalyses. Here, we implemented and assessed the effects of the extreme convection parameterization (ECP) in the Massive-Parallel Trajectory Calculations (MPTRAC) model. The ECP is conceptually simple. It requires the convective available potential energy (CAPE) and the height of the equilibrium level (EL) as input parameters. Assuming that unresolved convective events yield well-mixed vertical columns of air, the ECP randomly redistributes the air parcels vertically between the surface and the EL if CAPE is present. We analyzed statistics of explicitly resolved and parameterized convective updrafts and found that the frequencies of strong updrafts due to the ECP, i.e., 20 K potential temperature increase over 6 h or more, increase by 2 to 3 orders of magnitude for ERA5 and 3 to 5 orders of magnitude for ERA-Interim compared to the explicitly resolved updrafts. To assess the effects of the ECP on tropospheric tracer transport, we conducted transport simulations for the artificial tracer e90, which is released globally near the surface and which has a constant e-folding lifetime of 90 d throughout the atmosphere. The e90 simulations were conducted for the year 2017 with both ERA5 and ERA-Interim. Next to sensitivity tests on the choice of the CAPE threshold, an important tuning parameter of the ECP, we suggest a modification of the ECP method, i.e., to take into account the convective inhibition (CIN) indicating the presence of warm, stable layers that prevent convective updrafts in the real atmosphere. While ERA5 has higher spatiotemporal resolution and explicitly resolves more convective updrafts than ERA-Interim, we found there is still a need for both reanalyses to apply a convection parameterization such as the ECP to better represent tracer transport from the planetary boundary layer into the free troposphere on the global scale.
Transport into the polar stratosphere from the Asian monsoon region
The Southeast Asian boundary layer has witnessed alarming pollution levels in recent years, which even affects the trace gas composition in the Southern Hemisphere by inter-hemispheric transport. We use SF6 observations and the Lagrangian chemistry transport model Chemical Lagrangian Model of the Stratosphere (CLaMS), driven by the ERA5 reanalysis data for the period 2010–2014, to assess the impact of the Asian monsoon (AM) region (15–45° N, 30–120° E) as a significant source of pollutants for the stratosphere, in particular in polar regions. We examine the contribution of transport from the AM region to the Northern Hemisphere polar region (NP) (60–90° N) and to the Southern Hemisphere polar region (SP) (60–90° S). Despite the smaller geographical size of the AM region when compared to the Southern Hemisphere subtropics (15–45° S) and the tropics (15° S–15° N), our findings reveal that the air mass fractions from the AM to the polar regions are approximately 1.5 times larger than the corresponding contributions from the Southern Hemisphere subtropics and only about 2 times smaller than those from the tropics. The transport of air masses from the AM boundary layer to the stratospheric polar vortex primarily occurs above an altitude of about 450 K and over timescales exceeding 2 years. In contrast, transport timescales to the polar regions situated below the vortex are shorter, typically less than about 2 years. Furthermore, the transport contribution from the AM region to the polar regions exhibits distinctive inter-annual variability, significantly influencing the distributions of pollutants. Our analysis of detrended SF6 from an Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) over the polar regions reveals a strong correlation with the fraction of relatively young air (less than 2 years old) originating from the AM, Southern Hemisphere subtropics, and the tropics. Importantly, our reconstructed SF6 data indicate that approximately 20 % of SF6 in both the northern and southern polar stratosphere originates from the AM boundary layer. The largest fraction of SF6 in the polar stratosphere still originates from the tropical boundary layer, contributing about 50 % of SF6.
Moist bias in the Pacific upper troposphere and lower stratosphere (UTLS) in climate models affects regional circulation patterns
Water vapour in the upper troposphere and lower stratosphere (UTLS) is a key radiative agent and a crucial factor in the Earth's climate system. Here, we investigate a common regional moist bias in the Pacific UTLS during Northern Hemisphere summer in state-of-the-art climate models. We demonstrate, through a combination of climate model experiments and satellite observations, that the Pacific moist bias amplifies local long-wave cooling, which ultimately impacts regional circulation systems in the UTLS. Related impacts involve a strengthening of isentropic potential vorticity gradients, strengthened westerlies in the Pacific westerly duct region, and a zonally displaced anticyclonic monsoon circulation. Furthermore, we show that the regional Pacific moist bias can be significantly reduced by applying a Lagrangian, less-diffusive transport scheme and that such a model improvement could be important for improving the simulation of regional circulation systems, in particular in the Asian monsoon and Pacific region.