Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
15
result(s) for
"Konya, Keiko"
Sort by:
CH4 emissions from runoff water of Alaskan mountain glaciers
by
Sueyoshi, Tetsuo
,
Wakita, Masahide
,
Iwahana, Go
in
704/106/125
,
704/106/694
,
Background levels
2024
Recent studies have observed high methane concentrations in runoff water and the ambient air at various glacier sites, including the Greenland Ice Sheet, the glacier forefield in Svalbard, and the ice cap in Iceland. This study extends these findings to smaller mountain glaciers in Alaska. Methane and carbon dioxide concentrations in the ambient air near the meltwater outlet, fluxes of these gases at the surface of runoff water and riverbank sediments, and dissolved methane content in the runoff water were measured at four glaciers. Three of the four glaciers showed conspicuous signals of methane emissions from runoff water, with the Castner Glacier terminus exhibiting a methane concentration three times higher than background levels, along with elevated dissolved methane levels in the runoff water. This study marks the detection of significant methane emissions from small mountain glacier runoff, contributing to the understanding that mountain glaciers also release methane into the atmosphere.
Journal Article
Depositional and summer snow melting features in 2007–2011 on the upstream side of Potanin Glacier, Mongolian Altai, reconstructed by pollen and oxygen isotope analysis
2015
This study analyzed pollen in snow pits dug in late summer (2008–2011) on the upstream side of Potanin Glacier, a summer accumulation-type glacier in the Mongolian Altai, to reconstruct the recent snow depositional environment, particularly melting conditions. Annual snow pit observations were performed at sites 0 and 4 (3752 and 3890 m a.s.l., respectively). Seasonal layers in the pits were identified according to the presence of pollen from three taxa (Betulaceae, Pinus, and Artemisia), which have different pollen seasons typically between May and early September. The pollen-dating method was successful in snow pits where conventional methods such as ice layer dating and use of δ ¹⁸O records were unreliable due to significant melting. Depths of pollen concentration peaks for the three taxa differed annually at both sites. In some years, concentration peaks of the three pollen taxa were found at different depths, but in other years, peaks associated with each taxon were found at the same depth. This difference was explained by summer temperature. Snow melting during the relatively warm summers of 2007 and 2008 caused pollen grains to concentrate on the glacier surface, producing peaks at the same depth. In contrast, snow melting during the relatively cool summer of 2009 did not substantially alter pollen grain location, and each peak thus retained its original depth. The median temperatures in 2010 and 2011 corresponded to pollen concentrating on the glacier surface at site 0 but retaining their original position at site 4.
Journal Article
Reconstruction of the depositional environment upstream of Potanin Glacier, Mongolian Altai, from pollen analysis
2012
This study analyzed pollen in snow pits dug in September 2008 and September 2009 upstream of Potanin Glacier in the Mongolian Altai Mountains, which is a summer accumulation-type glacier, to investigate the environment for recent snow deposits. The snow pit observations in both years were carried out at sites 0 and 4, which are 3752 and 3890 m above sea level, respectively. Seasonal layers of the pits were identified according to the taxon of pollen scattered during different seasons. In the 2007 and 2008 layers, concentration peaks of pollen taxa scattered from spring to summer were found at the same depth. Thus, the summer melt reached the spring layer such that pollen grains in the melted layer became concentrated on the summer melt surface and caused the pollen peaks. In contrast, the concentration peaks associated with each season appeared at different depths in the 2009 layer, suggesting that the degree of melting in 2009 was less than that in 2007 and 2008. This interpretation was supported by summer temperature data (June-August) for this region. Deviations in summer air temperatures from mean monthly temperatures for the summers of 1990-2009 were negative in 2009, whereas they were positive in 2007 and 2008.
Journal Article
Influence of weather conditions and spatial variability on glacier surface melt in Chilean Patagonia
2010
In order to clarify how differences in weather conditions affect the surface heat balance of a large maritime glacier, meteorological observations were carried out in the ablation area of Glaciar Exploradores in the Chilean Patagonia during the austral summer of 2006/2007. Under cloudy/rainy weather, when the air temperature and wind speed were high due to advection, the average melting heat was 18.8 MJ m
−2
day
−1
and the turbulent heat fluxes contributed 35% of the total melt. During clear weather, the average melting heat was 16.9 MJ m
−2
day
−1
and 13% of the total was the turbulent heat fluxes. A decrease in air temperature due to the development of the glacier boundary layer on clear days will lead to an overestimation of the melt using the air temperature at a weather station outside of the glacier.
Journal Article
CH 4 emissions from runoff water of Alaskan mountain glaciers
2024
Recent studies have observed high methane concentrations in runoff water and the ambient air at various glacier sites, including the Greenland Ice Sheet, the glacier forefield in Svalbard, and the ice cap in Iceland. This study extends these findings to smaller mountain glaciers in Alaska. Methane and carbon dioxide concentrations in the ambient air near the meltwater outlet, fluxes of these gases at the surface of runoff water and riverbank sediments, and dissolved methane content in the runoff water were measured at four glaciers. Three of the four glaciers showed conspicuous signals of methane emissions from runoff water, with the Castner Glacier terminus exhibiting a methane concentration three times higher than background levels, along with elevated dissolved methane levels in the runoff water. This study marks the detection of significant methane emissions from small mountain glacier runoff, contributing to the understanding that mountain glaciers also release methane into the atmosphere.
Journal Article
Summer water balance characteristics of koryto glacier, kamchatka peninsula, russia
by
Muravyev, Yaroslav D.
,
Matsumoto, Takane
,
Yamada, Tomomi
in
ablation
,
Alpine glaciers
,
Basins
2004
The daily water balance for the drainage basin of Koryto Glacier, Kamchatka Peninsula, Russia, was calculated during the period from August to September 2000. The result shows that 14×10
6
m
3
of meltwater and 2×10
6
m
3
of rainwater entered the basin, while 26×10
6
m
3
of water drained from the basin through proglacial streams. Thus, about −9×10
6
m
3
of water storage reduction occurred in the basin. Vertical displacements of the glacier surface showed that the volume change due to contraction of subglacial cavities was nearly 20% of the total storage change. The remaining fraction of water storage during the period is thought to be stored in englacial and supraglacial locations. The estimate of water balance components in the early ablation season in 2000 indicates that meltwater was already stored within the glacier before the spring, even during the previous year, and that the stored water drained through the ablation season.
Journal Article
Surface heat balance and spatially distributed ablation modelling at koryto glacier, kamchatka peninsula, russia
by
Matsumoto, Takane
,
Konya, Keiko
,
Naruse, Renji
in
Alpine glaciers
,
Bgi / Prodig
,
distributed ablation model
2004
To investigate the characteristics of ablation at Koryto Glacier, a mountain glacier under maritime climate in Kamchatka Peninsula, Russia, we made field observations from August to early September 2000. At a site near the equilibrium line, the 31-day average net radiation, sensible heat flux, and latent heat flux were 43, 59 and 31 W
−2
, respectively. We developed a new distributed ablation model, which only needs measurements of air temperature and global radiation at one site. Hourly ablation rates at this site obtained by the energy balance method are related to measured air temperature and global radiation by linear multiple regression. A different set of multiple regression coefficients is fitted for snow and ice surfaces. Better estimates of ablation rate can be obtained by this approach than by other temperature index models. These equations are then applied to each grid cell of a digital elevation model to estimate spatially distributed hourly melt. Air temperature is extrapolated using a constant temperature lapse rate and global radiation is distributed considering topographic effects. The model enables us to calculate the hourly spatial distribution of ablation rates within the glacier area and could well provide a realistic simulation of ablation over the whole glacier.
Journal Article