Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Koranda, P"
Sort by:
Dementia care in the Danube Region. A multi-national expert survey
Dementia is a particularly severe societal challenge in several countries of the Danube Region due to higher-than-average increment in population longevity, disproportionate increase of the old-age dependency ratio, and selective outward migration of health care professionals. A survey was conducted among dementia experts to obtain a deeper understanding of the dementia care structures and services in this geographical area, and to identify the educational needs of health care professionals, and the availability of assistive technology. A standardized questionnaire was sent out to 15 leading dementia experts/clinicians in 10 Danube Region countries inquiring about professional groups involved in dementia care, availability and reimbursement of services, inclusion of dementia in professional education and training, acceptability of Internet-based education, and availability of assistive technology. The authors are the survey respondents. The majority of individuals with dementia receive care in the community rather than in institutions. The roles of medical specialties are disparate. General practitioners usually identify dementia symptoms while specialists contribute most to clinical diagnosis and treatment. Health care professionals, particularly those who work closely with patients and carers, have limited access to dementia-specific education and training. The greatest need for dementia-specific education is seen for general practitioners and nurses. An Internet-based education and skill-building program is considered to be equivalent to traditional face-to-face but offer advantages in terms of convenience of access. Assistive technology is available in countries of the Danube Region but is significantly underused. Dementia care in the Danube Region can be improved by an educational and skill-building program for health care professionals who work in the frontline of dementia care. Such a program should also attempt to enhance interdisciplinary and intersectorial collaboration, to intensify the interaction between primary care and specialists, and to promote the implementation of assistive technology.
32nd International Austrian Winter Symposium
Table of contents A1 68Ga-PSMA PET/CT in staging and restaging of Prostate Cancer Patients: comparative study with 18F-Choline PET/CT W Langsteger, A Rezaee, W Loidl, HS Geinitz, F Fitz, M Steinmair, G Broinger, L Pallwien-Prettner, M Beheshti A2 F18 Choline PET – CT: an accurate diagnostic tool for the detection of parathyroid adenoma? L Imamovic, M Beheshti, G Rendl, D Hackl, O Tsybrovsky, M Steinmair, K Emmanuel, F Moinfar, C Pirich, W Langsteger A3 [18F]Fluoro-DOPA-PET/CT in the primary diagnosis of medullary thyroid carcinoma A Bytyqi, G Karanikas, M Mayerhöfer, O Koperek, B Niederle, M Hartenbach A4 Variations of clinical PET/MR operations: An international survey on the clinical utilization of PET/MRI T Beyer, K Herrmann, J Czernin A5 Standard Dixon-based attenuation correction in combined PET/MRI: Reproducibility and the possibility of Lean body mass estimation I Rausch, P Rust, MD DiFranco, M Lassen, A Stadlbauer, ME Mayerhöfer, M Hartenbach, M Hacker, T Beyer A6 High resolution digital FDG PET/MRI imaging for assessment of ACL graft viability K Binzel, R Magnussen, W Wei, MU Knopp, DC Flanigan, C Kaeding, MV Knopp A7 Using pre-existing hematotoxicity as predictor for severe side effects and number of treatment cycles of Xofigo therapy A Leisser, M Nejabat, M Hartenbach, G Kramer, M Krainer, M Hacker, A Haug A8 QDOSE – comprehensive software solution for internal dose assessment Wencke Lehnert, Karl Schmidt, Sharok Kimiaei, Marcus Bronzel, Andreas Kluge A9 Clinical impact of Time-of-Flight on next-generation digital PET imaging of Yttrium-90 radioactivity following liver radioembolization CL Wright, K Binzel, J Zhang, Evan Wuthrick, Piotr Maniawski, MV Knopp A10 Snakes in patients! Lessons learned from programming active contours for automated organ segmentation M Blaickner, E Rados, A Huber, M Dulovits, H Kulkarni, S Wiessalla, C Schuchardt, RP Baum, B Knäusl, D Georg A11 Influence of a genetic polymorphism on brain uptake of the dual ABCB1/ABCG2 substrate [11C]tariquidar M Bauer, B Wulkersdorfer, W Wadsak, C Philippe, H Haslacher, M Zeitlinger, O Langer A12 Outcome prediction of temporal lobe epilepsy surgery from P-glycoprotein activity. Pooled analysis of (R)-[11C]-verapamil PET data from two European centres M Bauer, M Feldmann, R Karch, W Wadsak, M Zeitlinger, MJ Koepp, M-C Asselin, E Pataraia, O Langer A13 In-vitro and in-vivo characterization of [18F]FE@SNAP and derivatives for the visualization of the melanin concentrating hormone receptor 1 M Zeilinger, C Philippe, M Dumanic, F Pichler, J Pilz, M Hacker, W Wadsak, M Mitterhauser A14 Reducing time in quality control leads to higher specific radioactivity of short-lived radiotracers L Nics, B Steiner, M Hacker, M Mitterhauser, W Wadsak A15 In vitro 11C-erlotinib binding experiments in cancer cell lines with epidermal growth factor receptor mutations A Traxl, Thomas Wanek, Kushtrim Kryeziu, Severin Mairinger, Johann Stanek, Walter Berger, Claudia Kuntner, Oliver Langer A16 7-[11C]methyl-6-bromopurine, a PET tracer to measure brain Mrp1 function: radiosynthesis and first PET evaluation in mice S Mairinger, T Wanek, A Traxl, M Krohn, J Stanek, T Filip, M Sauberer, C Kuntner, J Pahnke, O Langer A17 18F labeled azidoglucose derivatives as “click” agents for pretargeted PET imaging D Svatunek, C Denk, M Wilkovitsch, T Wanek, T Filip, C Kuntner-Hannes, J Fröhlich, H Mikula A18 Bioorthogonal tools for PET imaging: development of radiolabeled 1,2,4,5-Tetrazines C Denk, D Svatunek, T Wanek, S Mairinger, J Stanek, T Filip, J Fröhlich, H Mikula, C Kuntner-Hannes A19 Preclinical evaluation of [18F]FE@SUPPY- a new PET-tracer for oncology T Balber, J Singer, J Fazekas, C Rami-Mark, N Berroterán-Infante, E Jensen-Jarolim, W Wadsak, M Hacker, H Viernstein, M Mitterhauser A20 Investigation of Small [18F]-Fluoroalkylazides for Rapid Radiolabeling and In Vivo Click Chemistry C Denk, D Svatunek, B Sohr, H Mikula, J Fröhlich, T Wanek, C Kuntner-Hannes, T Filip A21 Microfluidic 68Ga-radiolabeling of PSMA-HBED-CC using a flow-through reactor S Pfaff, C Philippe, M Mitterhauser, M Hartenbach, M Hacker, W Wadsak A22 Influence of 24-nor-ursodeoxycholic acid on hepatic disposition of [18F]ciprofloxacin measured with positron emission tomography T Wanek, E Halilbasic, M Visentin, S Mairinger, B Stieger, C Kuntner, M Trauner, O Langer A23 Automated 18F-flumazenil production using chemically resistant disposable cassettes P Lam, M Aistleitner, R Eichinger, C Artner A24 Similarities and differences in the synthesis and quality control of 177Lu-DOTA-TATE, 177Lu -HA-DOTA-TATE and 177Lu-DOTA-PSMA (PSMA-617) H Eidherr, C Vraka, A Haug, M Mitterhauser, L Nics, M Hartenbach, M Hacker, W Wadsak A25 68Ga- and 177Lu-labelling of PSMA-617 H Kvaternik, R Müller, D Hausberger, C Zink, RM Aigner A26 Radiolabelling of liposomes with 67Ga and biodistribution studies after administration by an aerosol inhalation system U Cossío, M Asensio, A Montes, S Akhtar, Y te Welscher, R van Nostrum, V Gómez-Vallejo, J Llop A27 Fully automated quantification of DaTscan SPECT: Integration of age and gender differences F VandeVyver, T Barclay, N Lippens, M Troch A28 Lesion-to-background ratio in co-registered 18F-FET PET/MR imaging – is it a valuable tool to differentiate between low grade and high grade brain tumor? L Hehenwarter, B Egger, J Holzmannhofer, M Rodrigues-Radischat, C Pirich A29 [11C]-methionine PET in gliomas - a retrospective data analysis of 166 patients N Pötsch, I Rausch, D Wilhelm, M Weber, J Furtner, G Karanikas, A Wöhrer, M Mitterhauser, M Hacker, T Traub-Weidinger A30 18F-Fluorocholine versus 18F-Fluorodeoxyglucose for PET/CT imaging in patients with relapsed or progressive multiple myeloma: a pilot study T Cassou-Mounat, S Balogova, V Nataf, M Calzada, V Huchet, K Kerrou, J-Y Devaux, M Mohty, L Garderet, J-N Talbot A31 Prognostic benefit of additional SPECT/CT in sentinel lymph node mapping of breast cancer patients S Stanzel, G Pregartner, T Schwarz, V Bjelic-Radisic, B Liegl-Atzwanger, R Aigner A32 Evaluation of diagnostic value of TOF-18F-FDG PET/CT in patients with suspected pancreatic cancer S Stanzel, F Quehenberger, RM Aigner A33 New quantification method for diagnosis of primary hyperpatahyroidism lesions and differential diagnosis vs thyropid nodular disease in dynamic scintigraphy A Koljević Marković, Milica Janković, V Miler Jerković, M Paskaš, G Pupić, R Džodić, D Popović A34 A rare case of diffuse pancreatic involvement in patient with merkel cell carcinoma detected by 18F-FDG MC Fornito, D Familiari A35 TSH-stimulated 18F-FDG PET/CT in the diagnosis of recurrent/metastatic radioiodine-negative differentiated thyroid carcinomas in patients with various thyroglobuline levels P Koranda, H Polzerová, I Metelková, L Henzlová, R Formánek, E Buriánková, M Kamínek A36 Breast Dose from lactation following I131 treatment WH Thomson, C Lewis A37 A new concept for performing SeHCAT studies with the gamma camera WH Thomson, J O’Brien, G James, A Notghi A38 Whole body F-18-FDG-PET and tuberculosis: sensitivity compared to x-ray-CT H Huber, I Stelzmüller, R Wunn, M Mandl, F Fellner, B Lamprecht, M Gabriel A39 Emerging role 18F-FDG PET-CT in the diagnosis and follow-up of the infection in heartware ventricular assist system (HVAD) MC Fornito, G Leonardi A40 Validation of Poisson resampling software WH Thomson, J O’Brien, G James A41 Protection of PET nuclear medicine personnel: problems in satisfying dose limit requirements J Hudzietzová, J Sabol, M Fülöp
000438: PRE-OPERATIVE LYMPHOSCINTIGRAPHY AND RADIOGUIDED SURGERY IN ENDOMETRIAL CANCER PATIENTS AFTER TRANSCERVICAL INTRAMYOMETRIAL INJECTION OF LABELLED COLLOID
Objective: The aim of this study was to evaluate the feasibility of pre-operative lymphoscintigraphy and radio-guided surgery in endometrial cancer patients after intramyometrial administration of labelled colloid. Patients and Methods: Between April 2002 and March 2005, thirty three patients with endometrial cancer received pre-operatively 50 MBq of 99m Tc-nanocolloid. Radiopharmaceutical agent was administered by a 25 gauge needle transcervically into the myometrium. Subsequently, series of static lymphoscintigrams were made 20 to 90 min after injection. Two hours after injection the surgery started. Twenty eight patients underwent total abdominal hysterectomy, bilateral salpingo-oophorectomy and pelvic lymphadenectomy. Five patients were scheduled for laparoscopically assisted vaginal hysterectomy, bilateral salpingo-oophorectomy and pelvic lymphadenectomy. Paraaortal lymphadenectomy was performed in 11 cases. A gamma detecting probe was used to locate radioactive lymph nodes. Each hot lymph node was removed separately. Results: Sentinel lymph nodes were identified in 25 (75%) of 33 patients. The mean number of sentinel nodes detected was 2,9 (range 1-10). Seventy two (15,3%) of 472 nodes obtained in total, were identified as radioactive-colloid positive. Histopathological analysis revealed five (7%) of 72 lymphonodes to be positive of metastases. Sentinel nodes in paraaortic area were identified in 11 (33%) patients. No false negative sentinel lymphonodes were observed. Conclusion: Transcervical intramyometrial administration of radioactive -colloid does not improve detection rates of sentinel lymphon- odes in early stage endometrial cancer patients. Combination of pre-operative lymphoscintigraphy and intra-operative radioguided surgery may be, on the other hand, a useful tool for the visualisation of sentinel lymphonodes.
Convergent antibody responses to SARS-CoV-2 in convalescent individuals
During the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has led to the infection of millions of people and has claimed hundreds of thousands of lives. The entry of the virus into cells depends on the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2. Although there is currently no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-2 1 – 5 . Here we report on 149 COVID-19-convalescent individuals. Plasma samples collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres; titres were less than 50 in 33% of samples, below 1,000 in 79% of samples and only 1% of samples had titres above 5,000. Antibody sequencing revealed the expansion of clones of RBD-specific memory B cells that expressed closely related antibodies in different individuals. Despite low plasma titres, antibodies to three distinct epitopes on the RBD neutralized the virus with half-maximal inhibitory concentrations (IC 50 values) as low as 2 ng ml −1 . In conclusion, most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective. Although rare, antibodies against the receptor-binding domain of SARS-CoV-2 that showed potent antiviral activity were obtained from all tested convalescent individuals, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.
Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories 1 , 2 , 3 , 4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity. Squeezed states of light have been experimentally demonstrated to improve the performance of the Laser Interferometer Gravitational-wave Observatory (LIGO) in astrophysically relevant frequency regions. This enhanced performance may help to reach the sensitivity required for detecting gravitational waves.
A gravitational wave observatory operating beyond the quantum shot-noise limit
‘Squeezed light’ enables quantum noise in one aspect of light to be reduced by increasing the noise, or more accurately the quantum uncertainty, of a complementary aspect. This has now been used to push the detectors at the heart of the GEO600 gravitational wave observatory to unprecedented levels of sensitivity. Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein’s general theory of relativity 1 and are generated, for example, by black-hole binary systems 2 . Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology—the injection of squeezed light 3 —offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO 600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3–4 years. GEO 600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy 4 .
An upper limit on the stochastic gravitational-wave background of cosmological origin
Gravitational waves: LIGO sets the limits The general theory of relativity predicts that all accelerating objects produce gravitational waves — analogous to electromagnetic waves — that should be detectable for instance in the case of extremely massive objects such as black holes undergoing acceleration. The existence of such waves has been inferred indirectly, but an important goal in physics is their direct observation, a feat that would both validate Einstein's theory and lead to new areas of cosmology. Now early results from LIGO (the Laser Interferometer Gravitational-Wave Observatory), one of the handful of detectors searching for gravity waves, have provided a starting point for further gravity hunts by deriving an upper limit for the stochastic background of gravitational waves of cosmological origin. The data rule out models of early Universe evolution with a relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources and should carry unique signatures from the earliest epochs of the Universe. Limits on the amplitude of the stochastic gravitational-wave background are now reported using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory. These limits rule out certain models of early Universe evolution. A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations 1 . Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory 2 (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 × 10 -6 at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter 3 , as well as cosmic (super)string models with relatively small string tension 4 that are favoured in some string theory models 5 . This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis 1 , 6 and cosmic microwave background 7 at 100 Hz.
Element-Specific Magnetic Microscopy with Circularly Polarized X-Rays
Circularly polarized soft x-rays have been used with an imaging photoelectron microscope to record images of magnetic domains at a spatial resolution of 1 micrometer. The magnetic contrast, which can be remarkably large, arises from the fact that the x-ray absorption cross section at inner-shell absorption edges of aligned magnetic atoms depends on the relative orientation of the photon spin and the local magnetization direction. The technique is element-specific, and, because of the long mean free paths of the x-rays and secondary electrons, it can record images of buried magnetic layers.
Design and characterization of HIV-1 vaccine candidates to elicit antibodies targeting multiple epitopes
A primary goal in the development of an AIDS vaccine is the elicitation of broadly neutralizing antibodies (bNAbs) that protect against diverse HIV-1 strains. To this aim, germline-targeting immunogens have been developed to activate bNAb precursors and initiate the induction of bNAbs. While most pre-clinical germline-targeting HIV-1 vaccine candidates only include a single bNAb precursor epitope, an effective HIV-1 vaccine will likely require bNAbs that target multiple epitopes on Env. Here, we report a newly designed germline-targeting Env SOSIP trimer, named 3nv.2, that presents three bNAb epitopes on Env: the CD4bs, V3, and V2 epitopes. 3nv.2 forms a stable trimeric Env and binds to bNAb precursors from each of the desired epitopes. Immunization experiments in rhesus macaques and mice demonstrate 3nv.2 elicits the combined effects of its parent immunogens. Our results provide proof-of-concept for using a germline-targeting immunogen presenting three or more bNAb epitopes and a framework to develop improved next-generation HIV-1 vaccine candidates.