Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Korkhov, Volodymyr M."
Sort by:
The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein
Membrane-integral adenylyl cyclases (ACs) are key enzymes in mammalian heterotrimeric GTP-binding protein (G protein)–dependent signal transduction, which is important in many cellular processes. Signals received by the G protein–coupled receptors are conveyed to ACs through G proteins to modulate the levels of cellular cyclic adenosine monophosphate (cAMP). Here, we describe the cryo–electron microscopy structure of the bovine membrane AC9 bound to an activated G protein as subunit at 3.4-angstrom resolution. The structure reveals the organization of the membrane domain and helical domain that spans between the membrane and catalytic domains of AC9. The carboxyl-terminal extension of the catalytic domain occludes both the catalytic and the allosteric sites of AC9, inducing a conformation distinct from the substrate- and activator-bound state, suggesting a regulatory role in cAMP production.
Mechanism of connexin channel inhibition by mefloquine and 2-aminoethoxydiphenyl borate
Gap junction intercellular communication (GJIC) between two adjacent cells involves direct exchange of cytosolic ions and small molecules via connexin gap junction channels (GJCs). Connexin GJCs have emerged as drug targets, with small molecule connexin inhibitors considered a viable therapeutic strategy in several diseases. The molecular mechanisms of GJC inhibition by known small molecule connexin inhibitors remain unknown, preventing the development of more potent and connexin-specific therapeutics. Here we show that two GJC inhibitors, mefloquine (MFQ) and 2-aminoethoxydiphenyl borate (2APB) bind to Cx32 and block dye permeation across Cx32 hemichannels (HCs) and GJCs. Cryo-EM analysis shows that 2APB binds to “site A”, close to the N-terminal gating helix of Cx32 GJC, restricting the entrance to the channel pore. In contrast, MFQ binds to a distinct “site M”, deeply buried within the pore. MFQ binding to this site modifies the electrostatic properties of Cx32 pore. Mutagenesis of V37, a key residue located in the site M, renders Cx32 HCs and GJCs insensitive to MFQ-mediated inhibition. Moreover, our cryo-EM analysis, mutagenesis and activity assays show that MFQ targets the M site in Cx43 GJC similarly to Cx32. Taken together, our results point to a conserved inhibitor binding site in connexin channels, opening a new route for development of specific drugs targeting connexins.
Structural basis of organic cation transporter-3 inhibition
Organic cation transporters (OCTs) facilitate the translocation of catecholamines, drugs and xenobiotics across the plasma membrane in various tissues throughout the human body. OCT3 plays a key role in low-affinity, high-capacity uptake of monoamines in most tissues including heart, brain and liver. Its deregulation plays a role in diseases. Despite its importance, the structural basis of OCT3 function and its inhibition has remained enigmatic. Here we describe the cryo-EM structure of human OCT3 at 3.2 Å resolution. Structures of OCT3 bound to two inhibitors, corticosterone and decynium-22, define the ligand binding pocket and reveal common features of major facilitator transporter inhibitors. In addition, we relate the functional characteristics of an extensive collection of previously uncharacterized human genetic variants to structural features, thereby providing a basis for understanding the impact of OCT3 polymorphisms. The current work reports the structure of the human organic cation transporter 3 (OCT3 / SLC22A3) and provides the structural basis of its inhibition by two specific inhibitors, decynium-22 and corticosterone.
Cryo-EM structure of the botulinum neurotoxin A/SV2B complex and its implications for translocation
Botulinum neurotoxin A1 (BoNT/A1) belongs to the most potent toxins and is used as a major therapeutic agent. Neurotoxin conformation is crucial for its translocation to the neuronal cytosol, a key process for intoxication that is only poorly understood. To gain molecular insights into the steps preceding toxin translocation, we determine cryo-EM structures of BoNT/A1 alone and in complex with its receptor synaptic vesicle glycoprotein 2B (SV2B). In solution, BoNT/A1 adopts a unique, semi-closed conformation. The toxin changes its structure into an open state upon receptor binding with the translocation domain (H N ) and the catalytic domain (LC) remote from the membrane, suggesting translocation incompatibility. Under acidic pH conditions, where translocation is initiated, receptor-bound BoNT/A1 switches back into a semi-closed conformation. This conformation brings the LC and H N close to the membrane, suggesting that a translocation-competent state of the toxin is required for successful LC transport into the neuronal cytosol. Translocation into neurons is crucial for BoNT/A1 action. Here, the authors show by single-particle cryo-EM that BoNT/A1 bound to its receptor SV2B switches its conformation from an open, translocation-incompatible to a semi-closed, translocation-competent state at acidic pH.
Structural basis of adenylyl cyclase 9 activation
Adenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood. Here, we present the cryo-EM structures of AC9 in several distinct states: (i) AC9 bound to a nucleotide inhibitor MANT-GTP, (ii) bound to an artificial activator (DARPin C4) and MANT-GTP, (iii) bound to DARPin C4 and a nucleotide analogue ATPαS, (iv) bound to Gαs and MANT-GTP. The artificial activator DARPin C4 partially activates AC9 by binding at a site that overlaps with the Gαs binding site. Together with the previously observed occluded and forskolin-bound conformations, structural comparisons of AC9 in the four conformations described here show that secondary structure rearrangements in the region surrounding the forskolin binding site are essential for AC9 activation. Adenylyl cyclases (ACs) generate the second messenger cAMP and play an important role in cellular signaling. Here, the authors use cryo-EM to trace the conformational changes resulting from binding to partial and full activators to one of these enzymes, AC9.
Expression and purification of the mammalian translocator protein for structural studies
The translocator protein (TSPO) is an 18 kDa polytopic membrane protein of the outer mitochondrial membrane, abundantly present in the steroid-synthesising cells. TSPO has been linked to a number of disorders, and it is recognised as a promising drug target with a range of potential medical applications. Structural and biochemical characterisation of a mammalian TSPO requires expression and purification of the protein of high quality in sufficiently large quantities. Here we describe detailed procedures for heterologous expression and purification of mammalian TSPO in HEK293 cells. We demonstrate that the established procedures can be used for untagged TSPO as well as for C-terminally fused TSPO constructs. Our protocol can be routinely used to generate high-quality TSPO preparations for biochemical and structural studies.
Structure of the connexin-43 gap junction channel in a putative closed state
Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now. Here, we describe the structure of a human Cx43 GJC solved by cryo-EM and single particle analysis at 2.26 Å resolution. The pore region of Cx43 GJC features several lipid-like densities per Cx43 monomer, located close to a putative lateral access site at the monomer boundary. We found a previously undescribed conformation on the cytosolic side of the pore, formed by the N-terminal domain and the transmembrane helix 2 of Cx43 and stabilized by a small molecule. Structures of the Cx43 GJC and hemichannels (HCs) in nanodiscs reveal a similar gate arrangement. The features of the Cx43 GJC and HC cryo-EM maps and the channel properties revealed by molecular dynamics simulations suggest that the captured states of Cx43 are consistent with a closed state.
Systematic identification of structure-specific protein–protein interactions
The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis–mass spectrometry (LiP–MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP–MS detects well-characterized PPIs, including antibody–target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson’s disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states. Synopsis A structural proteomics approach for identifying candidate interactors of any protein within a complex lysate is presented. It is applied to identify conformation-specific interactors of Rab GTPases and of the monomeric and fibrillar forms of the disease-associated protein alpha-synuclein. A method is presented for identifying candidate interactors of any bait protein within a complex lysate. It is applicable to the identification of conformation-specific interactors and pinpoints interaction sites. A resource of candidate interactors of monomeric and fibrillar forms of alpha-synuclein is presented. Candidate interactors of GTP- and GDP-bound forms of Rab GTPases are identified. A structural proteomics approach for identifying candidate interactors of any protein within a complex lysate is presented. It is applied to identify conformation-specific interactors of Rab GTPases and of the monomeric and fibrillar forms of the disease-associated protein alpha-synuclein.
Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation
Nucleotidyl cyclases, includingmembrane-integral and soluble adenylyl and guanylyl cyclases, are central components in a wide range of signaling pathways. These proteins are architecturally diverse, yet many of them share a conserved feature, a helical region that precedes the catalytic cyclase domain. The role of this region in cyclase dimerization has been a subject of debate. Although mutations within this region in various cyclases have been linked to genetic diseases, the molecular details of their effects on the enzymes remain unknown. Here, we report an X-ray structure of the cytosolic portion of the membrane-integral adenylyl cyclase Cya from Mycobacterium intracellulare in a nucleotide-bound state. The helical domains of each Cya monomer form a tight hairpin, bringing the two catalytic domains into an active dimerized state. Mutations in the helical domain of Cya mimic the disease-related mutations in human proteins, recapitulating the profiles of the corresponding mutated enzymes, adenylyl cyclase-5 and retinal guanylyl cyclase-1. Our experiments with fulllength Cya and its cytosolic domain link the mutations to protein stability, and the ability to induce an active dimeric conformation of the catalytic domains. Sequence conservation indicates that this domain is an integral part of cyclase machinery across protein families and species. Our study provides evidence for a role of the helical domain in establishing a catalytically competent dimeric cyclase conformation. Our results also suggest that the disease-associated mutations in the corresponding regions of human nucleotidyl cyclases disrupt the normal helical domain structure.
Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion
Active host cell invasion by the obligate intracellular apicomplexan parasites relies on the formation of a moving junction, which connects parasite and host cell plasma membranes during entry. Invading Toxoplasma gondii tachyzoites secrete their rhoptry content and insert a complex of RON proteins on the cytoplasmic side of the host cell membrane providing an anchor to which the parasite tethers. Here we show that a rhoptry-resident kinase RON13 is a key virulence factor that plays a crucial role in host cell entry. Cryo-EM, kinase assays, phosphoproteomics and cellular analyses reveal that RON13 is a secretory pathway kinase of atypical structure that phosphorylates rhoptry proteins including the components of the RON complex. Ultimately, RON13 kinase activity controls host cell invasion by anchoring the moving junction at the parasite-host cell interface. Host cell invasion by Toxoplasma gondii depends on the heavily phosphorylated RON complex, but the relevance and regulation of these modifications are not understood. Here, the authors identify the kinase RON13 as a key virulence factor, determine its structure and show that it phosphorylates the RON complex.