Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Korotaev Valery"
Sort by:
Routing Protocols for Low Power and Lossy Networks in Internet of Things Applications
The emergence of the Internet of Things (IoT) and its applications has taken the attention of several researchers. In an effort to provide interoperability and IPv6 support for the IoT devices, the Internet Engineering Task Force (IETF) proposed the 6LoWPAN stack. However, the particularities and hardware limitations of networks associated with IoT devices lead to several challenges, mainly for routing protocols. On its stack proposal, IETF standardizes the RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks) as the routing protocol for Low-power and Lossy Networks (LLNs). RPL is a tree-based proactive routing protocol that creates acyclic graphs among the nodes to allow data exchange. Although widely considered and used by current applications, different recent studies have shown its limitations and drawbacks. Among these, it is possible to highlight the weak support of mobility and P2P traffic, restrictions for multicast transmissions, and lousy adaption for dynamic throughput. Motivated by the presented issues, several new solutions have emerged during recent years. The approaches range from the consideration of different routing metrics to an entirely new solution inspired by other routing protocols. In this context, this work aims to present an extensive survey study about routing solutions for IoT/LLN, not limited to RPL enhancements. In the course of the paper, the routing requirements of LLNs, the initial protocols, and the most recent approaches are presented. The IoT routing enhancements are divided according to its main objectives and then studied individually to point out its most important strengths and weaknesses. Furthermore, as the main contribution, this study presents a comprehensive discussion about the considered approaches, identifying the still remaining open issues and suggesting future directions to be recognized by new proposals.
Usability feature extraction using modified crow search algorithm: a novel approach
For the purpose of usability feature extraction and prediction, an innovative metaheuristic algorithm is introduced. Generally, the term “usability” is defined by the several researchers with respect to the hierarchical-based software usability model and it has become one of the important methods in terms of software quality. In hierarchically based software, its usability factors, attributes, and its characteristics are combined. The paper presented an algorithm, i.e., modified crow search algorithm (MCSA) mainly for extraction of usability features from hierarchical model with the optimal solution under the search for useful features. MCSA is an extension of original crow search algorithm (CSA), which is a naturally inspired algorithm. The mechanism of this algorithm is based on the process of hiding food and prevents theft and hence introduced this CSA in the field of software engineering practices as an inspiration. The algorithm generates a particular number of selected features/attributes and is applied on software development life cycles models, finding out the best among them. The results of the presented algorithm are compared with the standard binary bat algorithm (BBA), original CSA, and modified whale optimization algorithm (MWOA). The outcomes conclude that the proposed MCSA performs well than the standard BBA and original CSA as the proposed algorithms generate fewer number of feature selection equal to 17 than 18 in BBA, 23 in CSA, and 19 in MWOA.
Analysis of Polarization Images in the Microphysical Blood Parameters Research for the Hematocrit Diagnostics
The development of non-invasive optoelectronic technologies for human blood monitoring is one of the important research areas for medicine. A critical analysis of optoelectronic methods of blood research and the micromechanical systems based on them is carried out in this article. A design realization of a polarizing portable system for non-invasive monitoring of hematocrit as one of the basic homeostatic constants of the human body containing information about the microphysical parameters of blood cells has been substantiated. A physical model of polarized radiation conversion in a video information system of laser sensing of a biological research object has been formed. Visual and quantitative differences in the spatial distribution of polarization parameters of the scattered radiation for the states of the body with different hematocrit levels have been revealed. A scheme of a multichannel imaging portable system, based on a smartphone using miniature optical and microelectronic components of information conversion for non-invasive monitoring of microphysical blood parameters, has been created. The system implements the principle of polarimetric blood photometry and a multiparametric analysis of the polarization properties of the laser radiation scattered by blood. The developed portable optoelectronic system, based on a smartphone, can be used for rapid blood diagnostics in disaster medicine and the presence of clinical contraindications to the formation of invasive tests. The proposed polarization-based approach is a promising automated alternative to traditional devices and systems for the research of microphysical blood parameters.
Precision Calibration of Omnidirectional Camera Using a Statistical Approach
Omnidirectional optoelectronic systems (OOES) find applications in many areas where a wide viewing angle is crucial. The disadvantage of these systems is the large distortion of the images, which makes it difficult to make wide use of them. The purpose of this study is the development an algorithm for the precision calibration of an omnidirectional camera using a statistical approach. The calibration approach comprises three basic stages. The first stage is the formation of a cloud of points characterizing the view field of the virtual perspective camera. In the second stage, a calibration procedure that provides the projection function for the camera calibration is performed. The projection functions of traditional perspective lenses and omnidirectional wide-angle fisheye lenses with a viewing angle of no less than 180° are compared. The construction of the corrected image is performed in the third stage. The developed algorithm makes it possible to obtain an image for part of the field of view of an OOES by correcting the distortion from the original omnidirectional image.Using the developed algorithm, a non-mechanical pivoting camera based on an omnidirectional camera is implemented. The achieved mean squared error of the reproducing points from the original omnidirectional image onto the image with corrected distortion is less than the size of a very few pixels.
Lightweight and Efficient Dynamic Cluster Head Election Routing Protocol for Wireless Sensor Networks
Wireless Sensor Networks (WSNs) have gained great significance from researchers and industry due to their wide applications. Energy and resource conservation challenges are facing the WSNs. Nevertheless, clustering techniques offer many solutions to address the WSN issues, such as energy efficiency, service redundancy, routing delay, scalability, and making WSNs more efficient. Unfortunately, the WSNs are still immature, and suffering in several aspects. This paper aims to solve some of the downsides in existing routing protocols for WSNs; a Lightweight and Efficient Dynamic Cluster Head Election routing protocol (LEDCHE-WSN) is proposed. The proposed routing algorithm comprises two integrated methods, electing the optimum cluster head, and organizing the re-clustering process dynamically. Furthermore, the proposed protocol improves on others present in the literature by combining the random and periodic electing method in the same round, and the random method starts first at the beginning of each round/cycle. Moreover, both random and periodic electing methods are preceded by checking the remaining power to skip the dead nodes and continue in the same way periodically with the rest of the nodes in the round. Additionally, the proposed protocol is distinguished by deleting dead nodes from the network topology list during the re-clustering process to address the black holes and routing delay problems. Finally, the proposed algorithm’s mathematical modeling and analysis are introduced. The experimental results reveal the proposed protocol outperforms the LEACH protocol by approximately 32% and the FBCFP protocol by 8%, in terms of power consumption and network lifetime. In terms of Mean Package Delay, LEDCHE-WSN improves the LEACH protocol by 42% and the FBCFP protocol by 15%, and regarding Loss Ratio, it improves the LEACH protocol by approximately 46% and FBCFP protocol by 25%.
An Optoelectronic System for the Online Monitoring of the Chord Length of Steam Turbine Rotor Blades for Early Fault Detection
Research Subject: The research subject was the error of optoelectronic video endoscopy systems in measuring the chord length of low-pressure cylinder steam turbine blades during shaft rotation. Objective: The objective was to reduce the error of the optoelectronic system in measuring the chord length of turbine rotor blades on a closed cylinder during shaft rotation. Methodology: Analytical research and computer modeling of the information transformation process during blade image formation and processing were carried out. Theoretical and experimental evaluations of the system error were conducted. Main Results: The structure of the components contributing to the error in estimating the chord length of low-pressure turbine blades was analyzed. The contribution of individual components to the total error was identified, and methods for reducing the most significant error components were proposed. Practical Significance: The effectiveness of the proposed methods for error reduction was validated through computer simulations and experimental studies on two system prototypes. The results showed that the standard deviation of the random error component in chord measurement during dynamic operation did not exceed 0.27 mm.
Security in IoT-enabled smart agriculture: architecture, security solutions and challenges
Agricultural industry is one of the most vital industries that has a major contribution to the economy due to its share in the Gross Domestic Product (GDP) and as a source of employment. The past few decades have seen immense change in the operation of agricultural sector with the introduction of precision farming in conjunction with Internet of Things (IoT). The application of such advancements is highly based on exchange of messages between various devices in the farming. This paper aims to study the security scenarios applicable in husbandry through the analysis of possible attacks and threats. The testbeds available for agriculture based on IoT have been studied. An architecture for smart farming is proposed which is independent of the underlying technologies that may be used and the requirements of security have been laid out based on the proposed architecture. A literature survey of security protocols for various subsectors of security in smart agriculture along with authentication protocols in smart applications provides a detailed direction of the progress in each of farming security sub-areas and identifies the dearth of existing protocols. The current progress in development of IoT-based tools and systems from industry has also been studied.
RETRACTED ARTICLE: Usability feature extraction using modified crow search algorithm: a novel approach
For the purpose of usability feature extraction and prediction, an innovative metaheuristic algorithm is introduced. Generally, the term “usability” is defined by the several researchers with respect to the hierarchical-based software usability model and it has become one of the important methods in terms of software quality. In hierarchically based software, its usability factors, attributes, and its characteristics are combined. The paper presented an algorithm, i.e., modified crow search algorithm (MCSA) mainly for extraction of usability features from hierarchical model with the optimal solution under the search for useful features. MCSA is an extension of original crow search algorithm (CSA), which is a naturally inspired algorithm. The mechanism of this algorithm is based on the process of hiding food and prevents theft and hence introduced this CSA in the field of software engineering practices as an inspiration. The algorithm generates a particular number of selected features/attributes and is applied on software development life cycles models, finding out the best among them. The results of the presented algorithm are compared with the standard binary bat algorithm (BBA), original CSA, and modified whale optimization algorithm (MWOA). The outcomes conclude that the proposed MCSA performs well than the standard BBA and original CSA as the proposed algorithms generate fewer number of feature selection equal to 17 than 18 in BBA, 23 in CSA, and 19 in MWOA.
Nature-Inspired Algorithm for Training Multilayer Perceptron Networks in e-health Environments for High-Risk Pregnancy Care
Nature presents an infinite source of inspiration for computational models and paradigms, in particular for researchers associated with the area known as natural computing. The simultaneous optimization of the architectures and weights of artificial neural networks (ANNs) through biologically inspired algorithms is an interesting approach for obtaining efficient networks with relatively good generalization capabilities. This methodology constitutes a concordance between a low structural complexity model and low training error rates. Currently, complexity and high error rates are the leading issues faced in the development of clinical decision support systems (CDSSs) for pregnancy care. Hence, in this paper the use of a biologically inspired technique, known as particle swarm optimization (PSO), is proposed for reducing the computational cost of the ANN-based method referred to as the multilayer perceptron (MLP), without reducing its precision rate. The results show that the PSO algorithm is able to improve computational model performance, showing lower validation error rates than the conventional approach. This technique can select the best parameters and provide an efficient solution for training the MLP algorithm. The proposed nature-inspired algorithm and its parameter adjustment method improve the performance and precision of CDSSs. This technique can be applied in electronic health (e-health) systems as a useful tool for handling uncertainty in the decision-making process related to high-risk pregnancy. The proposed method outperformed, on average, other approaches by 26.4% in terms of precision and 14.9% in terms of the true positive ratio (TPR), and showed a reduction of 35.4% in the false positive ratio (FPR). Furthermore, this method was superior to the MLP algorithm in terms of precision and area under the receiver operating characteristic curve by 2.3 and 10.2%, respectively, when applied to the delivery outcome for pregnant women.