Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"Koschmann, Carl"
Sort by:
Standardization of the liquid biopsy for pediatric diffuse midline glioma using ddPCR
2021
Diffuse midline glioma (DMG) is a highly morbid pediatric brain tumor. Up to 80% of DMGs harbor mutations in histone H3-encoding genes, associated with poor prognosis. We previously showed the feasibility of detecting H3 mutations in circulating tumor DNA (ctDNA) in the liquid biome of children diagnosed with DMG. However, detection of low levels of ctDNA is highly dependent on platform sensitivity and sample type. To address this, we optimized ctDNA detection sensitivity and specificity across two commonly used digital droplet PCR (ddPCR) platforms (RainDance and BioRad), and validated methods for detecting
H3F3A
c.83A > T (H3.3K27M) mutations in DMG CSF, plasma, and primary tumor specimens across three different institutions. DNA was extracted from H3.3K27M mutant and H3 wildtype (H3WT) specimens, including H3.3K27M tumor tissue (n = 4), CSF (n = 6), plasma (n = 4), and human primary pediatric glioma cells (H3.3K27M, n = 2; H3WT, n = 1). ctDNA detection was enhanced via PCR pre-amplification and use of distinct custom primers and fluorescent LNA probes for c.83 A > T
H3F3A
mutation detection. Mutation allelic frequency (MAF) was determined and validated through parallel analysis of matched H3.3K27M tissue specimens (n = 3). We determined technical nuances between ddPCR instruments, and optimized sample preparation and sequencing protocols for H3.3K27M mutation detection and quantification. We observed 100% sensitivity and specificity for mutation detection in matched DMG tissue and CSF across assays, platforms and institutions. ctDNA is reliably and reproducibly detected in the liquid biome using ddPCR, representing a clinically feasible, reproducible, and minimally invasive approach for DMG diagnosis, molecular subtyping and therapeutic monitoring.
Journal Article
Therapeutic targeting of differentiation-state dependent metabolic vulnerabilities in diffuse midline glioma
2024
H3K27M diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), exhibit cellular heterogeneity comprising less-differentiated oligodendrocyte precursors (OPC)-like stem cells and more differentiated astrocyte (AC)-like cells. Here, we establish in vitro models that recapitulate DMG-OPC-like and AC-like phenotypes and perform transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs in the different cellular states. We then define strategies to target metabolic vulnerabilities within specific tumor populations. We show that AC-like cells exhibit a mesenchymal phenotype and are sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulate cholesterol biosynthesis, have diminished mitochondrial oxidative phosphorylation (OXPHOS), and are accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors show efficacy and extend survival in preclinical orthotopic models established with stem-like H3K27M DMG cells. Together, this study demonstrates that cellular subtypes within DMGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain.
Pediatric brain cancers are lethal malignancies driven by less-differentiated stem-like cells. Here the authors show that these cells exhibit distinct mitochondrial metabolism programs with targetable vulnerabilities.
Journal Article
H3.3-G34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models
by
Alindogan, Caitlin T.
,
Lowenstein, Pedro R.
,
Haase, Santiago
in
Agonists
,
Animal models
,
Animals
2022
Pediatric high-grade gliomas (pHGGs) are the leading cause of cancer-related deaths in children in the USA. Sixteen percent of hemispheric pediatric and young adult HGGs encode Gly34Arg/Val substitutions in the histone H3.3 (H3.3-G34R/V). The mechanisms by which H3.3-G34R/V drive malignancy and therapeutic resistance in pHGGs remain unknown. Using a syngeneic, genetically engineered mouse model (GEMM) and human pHGG cells encoding H3.3-G34R, we demonstrate that this mutation led to the downregulation of DNA repair pathways. This resulted in enhanced susceptibility to DNA damage and inhibition of the DNA damage response (DDR). We demonstrate that genetic instability resulting from improper DNA repair in G34R-mutant pHGG led to the accumulation of extrachromosomal DNA, which activated the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway, inducing the release of immune-stimulatory cytokines. We treated H3.3-G34R pHGG-bearing mice with a combination of radiotherapy (RT) and DNA damage response inhibitors (DDRi) (i.e., the blood-brain barrier-permeable PARP inhibitor pamiparib and the cell-cycle checkpoint CHK1/2 inhibitor AZD7762), and these combinations resulted in long-term survival for approximately 50% of the mice. Moreover, the addition of a STING agonist (diABZl) enhanced the therapeutic efficacy of these treatments. Long-term survivors developed immunological memory, preventing pHGG growth upon rechallenge. These results demonstrate that DDRi and STING agonists in combination with RT induced immune-mediated therapeutic efficacy in G34-mutant pHGG.
Journal Article
Panobinostat penetrates the blood–brain barrier and achieves effective brain concentrations in a murine model
by
Koschmann, Carl
,
Roberts, Holly
,
Ravi Karthik
in
Animal models
,
Blood-brain barrier
,
Brain cancer
2021
PurposePanobinostat, an orally bioavailable pan-HDAC inhibitor, has demonstrated potent activity in multiple malignancies, including pediatric brain tumors such as DIPG, with increased activity against H3K27M mutant cell lines. Given limited evidence regarding the CNS penetration of panobinostat, we sought to characterize its BBB penetration in a murine model.MethodsPanobinostat 15 mg/kg was administered IV to 12 CD-1 female mice. At specified time points, mice were euthanized, blood samples were collected, and brains were removed. LC–MS was performed to quantify panobinostat concentrations. Cmax and AUC were estimated and correlated with previously published pharmacokinetic analyses and reports of IC-50 values in DIPG cell lines.ResultsMean panobinostat plasma concentrations (ng/mL) were 27.3 ± 2.5 at 1 h, 7.56 ± 1.8 at 2 h, 1.48 ± 0.56 at 4 h, and 2.33 ± 1.18 at 7 h. Mean panobinostat brain concentrations (ng/g) were 60.5 ± 6.1 at 1 h, 42.9 ± 5.4 at 2 h, 33.2 ± 6.1 at 4 h, and 28.1 ± 4.3 at 7 h. Brain-to-plasma ratio at 1 h was 2.22 and the brain to plasma AUC ratio was 2.63. Based on the published human pharmacokinetic data, the anticipated Cmax in humans is expected to be significantly higher than the IC-50 identified in DIPG models.ConclusionIt is expected that panobinostat would be effective in CNS tumors where the IC-50 is in the low nanomolar range. Thus, our data demonstrate panobinostat crosses the BBB and achieves concentrations above the IC-50 for DIPG and other brain tumors and should be explored further for clinical efficacy.
Journal Article
CSF H3F3A K27M circulating tumor DNA copy number quantifies tumor growth and in vitro treatment response
by
Heth, Jason
,
Miklja, Zachary
,
Wierzbicki, Kyle
in
Biomedical and Life Sciences
,
Biomedicine
,
Brain cancer
2018
[...]less invasive and more rapid diagnostic tests are needed to detect actionable brain cancer mutations. H3K27M detection in CSF by a combination of nested PCR and Sanger sequencing in DIPG patients [6] as well as by ddPCR in older diffuse midline glioma patients has been reported [11]. [...]far, there have been no extensive studies using ddPCR to quantify ctDNA in the CSF of younger pediatric DIPG patients. Fig. 1 Fig. 1 a CSF ddPCR results from experimental samples correlated with contrast-enhancing and total tumor cross-sectional area on MRI. b ddPCR of multi-focal sampling shows K27M copy number varies between tumor (purple) and CSF (orange) regions c Co-culture scheme of bioluminescent human DIPG007 cells with NHAs. d DIPG007 cells release ctDNA in proportion to their proliferation. e 8 Gy radiation results in an increase in mutant ctDNA from DIPG007 cells We found that ddPCR was able to detect the K27M mutation in patient CSF and that the closest relationship emerged between mutant K27M copies per ng of total DNA (hereafter K27M copies) and contrast-enhancing cross-sectional tumor area on MRI (Fig. 1a). (DOCX 268 kb) Authors’ Affiliations (1) Department of Pediatrics, Michigan Medicine, University of Michigan Medical School, 3520D MSRB I, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA (2) SciGency Science Communications, Ann Arbor, MI 48104, USA (3) Department of Neurosurgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA (4) Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA (5) Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (6) Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (7) Department of Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain (8) Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, Loguidice L, Soto H, Garrett M, Zhu LD et al (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles.
Journal Article
Precision Oncology for High-Grade Gliomas: A Tumor Organoid Model for Adjuvant Treatment Selection
by
Hara, Toshiro
,
Haydin, Yacoub
,
Shankar, Sunita
in
Adjuvant treatment
,
Antigens
,
Antimitotic agents
2025
High-grade gliomas (HGGs) are aggressive brain tumors with limited treatment options and poor survival outcomes. Variants including isocitrate dehydrogenase (IDH)-wildtype, IDH-mutant, and histone 3 lysine to methionine substitution (H3K27M)-mutant subtypes demonstrate considerable tumor heterogeneity at the genetic, cellular, and microenvironmental levels. This presents a major barrier to the development of reliable models that recapitulate tumor heterogeneity, allowing for the development of effective therapies. Glioma tumor organoids (GTOs) have emerged as a promising model, offering a balance between biological relevance and practical scalability for precision medicine. In this study, we present a refined methodology for generating three-dimensional, multiregional, patient-derived GTOs across a spectrum of glioma subtypes (including primary and recurrent tumors) while preserving the transcriptomic and phenotypic heterogeneity of their source tumors. We demonstrate the feasibility of a high-throughput drug-screening platform to nominate multi-drug regimens, finding marked variability in drug response, not only between patients and tumor types, but also across regions within the tumor. These findings underscore the critical impact of spatial heterogeneity on therapeutic sensitivity and suggest that multiregional sampling is critical for adequate glioma model development and drug discovery. Finally, regional differential drug responses suggest that multi-agent drug therapy may provide better comprehensive oncologic control and highlight the potential of multiregional GTOs as a clinically actionable tool for personalized treatment strategies in HGG.
Journal Article
Diffuse intrinsic pontine glioma-like tumor with EZHIP expression and molecular features of PFA ependymoma
by
Mody, Rajen
,
Koschmann, Carl
,
Quezado, Martha
in
Biomedical and Life Sciences
,
Biomedicine
,
Biopsy
2020
Rights and permissions Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. Panwalkar P, Clark J, Ramaswamy V, Hawes D, Yang F, Dunham C, Yip S, Hukin J, Sun Y, Schipper MJ et al (2017) Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-a childhood posterior fossa ependymoma and is a powerful predictor of outcome. Piunti A, Smith ER, Morgan MAJ, Ugarenko M, Khaltyan N, Helmin KA, Ryan CA, Murray DC, Rickels RA, Yilmaz BD et al (2019) CATACOMB: an endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism.
Journal Article
Ultra-rapid somatic variant detection via real-time targeted amplicon sequencing
2022
Molecular markers are essential for cancer diagnosis, clinical trial enrollment, and some surgical decision making, motivating ultra-rapid, intraoperative variant detection. Sequencing-based detection is considered the gold standard approach, but typically takes hours to perform due to time-consuming DNA extraction, targeted amplification, and library preparation times. In this work, we present a proof-of-principle approach for sub-1 hour targeted variant detection using real-time DNA sequencers. By modifying existing protocols, optimizing for diagnostic time-to-result, we demonstrate confirmation of a hot-spot mutation from tumor tissue in ~52 minutes. To further reduce time, we explore rapid, targeted Loop-mediated Isothermal Amplification (LAMP) and design a bioinformatics tool—LAMPrey—to process sequenced LAMP product. LAMPrey’s concatemer aware alignment algorithm is designed to maximize recovery of diagnostically relevant information leading to a more rapid detection versus standard read alignment approaches. Using LAMPrey, we demonstrate confirmation of a hot-spot mutation (250x support) from tumor tissue in less than 30 minutes.
A method for detection of somatic variants is presented for the intraoperative evaluation of tumor mutations in less than 30 min, using rapid DNA extraction, in silico optimized LAMP amplification, and a LAMP product analysis tool: LAMPrey.
Journal Article
Purine salvage promotes treatment resistance in H3K27M-mutant diffuse midline glioma
by
Wahl, Daniel R.
,
Wilder-Romans, Kari
,
Zhang, Li
in
Biomedical and Life Sciences
,
Biomedicine
,
Brain cancer
2024
Background
Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain.
Methods
We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to
de novo
and salvage purine synthesis inhibition in combination with RT.
Results
DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of
de novo
synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of
de novo
guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo
.
Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and
de novo
purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo
.
Conclusions
Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the
de novo
and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the
de novo
synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.
Journal Article