Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Kouril, Michal"
Sort by:
GREIN: An Interactive Web Platform for Re-analyzing GEO RNA-seq Data
The vast amount of RNA-seq data deposited in Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA) is still a grossly underutilized resource for biomedical research. To remove technical roadblocks for reusing these data, we have developed a web-application GREIN (GEO RNA-seq Experiments Interactive Navigator) which provides user-friendly interfaces to manipulate and analyze GEO RNA-seq data. GREIN is powered by the back-end computational pipeline for uniform processing of RNA-seq data and the large number (>6,500) of already processed datasets. The front-end user interfaces provide a wealth of user-analytics options including sub-setting and downloading processed data, interactive visualization, statistical power analyses, construction of differential gene expression signatures and their comprehensive functional characterization, and connectivity analysis with LINCS L1000 data. The combination of the massive amount of back-end data and front-end analytics options driven by user-friendly interfaces makes GREIN a unique open-source resource for re-using GEO RNA-seq data. GREIN is accessible at: https://shiny.ilincs.org/grein , the source code at: https://github.com/uc-bd2k/grein , and the Docker container at: https://hub.docker.com/r/ucbd2k/grein .
Guided construction of single cell reference for human and mouse lung
Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs. Accurate cell-type identification is vital for single-cell analysis. Here, the authors develop a computational pipeline called “LungMAP CellRef” for efficient, automated cell-type annotation of normal and disease human and mouse lung single-cell datasets.
Connecting omics signatures and revealing biological mechanisms with iLINCS
There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling. There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here the authors present an integrative web-based platform for analysis of omics data and signatures of cellular perturbations.
GRcalculator: an online tool for calculating and mining dose–response data
Background Quantifying the response of cell lines to drugs or other perturbagens is the cornerstone of pre-clinical drug development and pharmacogenomics as well as a means to study factors that contribute to sensitivity and resistance. In dividing cells, traditional metrics derived from dose–response curves such as IC 50 , AUC , and E max , are confounded by the number of cell divisions taking place during the assay, which varies widely for biological and experimental reasons. Hafner et al. (Nat Meth 13:521–627, 2016) recently proposed an alternative way to quantify drug response, normalized growth rate (GR) inhibition, that is robust to such confounders. Adoption of the GR method is expected to improve the reproducibility of dose–response assays and the reliability of pharmacogenomic associations (Hafner et al. 500–502, 2017). Results We describe here an interactive website ( www.grcalculator.org ) for calculation, analysis, and visualization of dose–response data using the GR approach and for comparison of GR and traditional metrics. Data can be user-supplied or derived from published datasets. The web tools are implemented in the form of three integrated Shiny applications ( grcalculator, grbrowser, and grtutorial) deployed through a Shiny server. Intuitive graphical user interfaces (GUIs) allow for interactive analysis and visualization of data. The Shiny applications make use of two R packages ( shinyLi and GRmetrics ) specifically developed for this purpose. The GRmetrics R package is also available via Bioconductor and can be used for offline data analysis and visualization. Source code for the Shiny applications and associated packages ( shinyLi and GRmetrics ) can be accessed at www.github.com/uc-bd2k/grcalculator and www.github.com/datarail/gr_metrics . Conclusions GRcalculator is a powerful, user-friendly, and free tool to facilitate analysis of dose–response data. It generates publication-ready figures and provides a unified platform for investigators to analyze dose–response data across diverse cell types and perturbagens (including drugs, biological ligands, RNAi, etc.). GRcalculator also provides access to data collected by the NIH LINCS Program ( http://www.lincsproject.org /) and other public domain datasets. The GRmetrics Bioconductor package provides computationally trained users with a platform for offline analysis of dose–response data and facilitates inclusion of GR metrics calculations within existing R analysis pipelines. These tools are therefore well suited to users in academia as well as industry.
Sounds good: Phonetic sound patterns in top brand names
Recent research has demonstrated that brand name sounds can influence consumer behavior. Sound symbolism, the link between sound and meaning, can convey product information, enhance affinity, and increase purchase intentions. This study examines sound patterns of Interbrand top 100 brand names, including three previously unexamined sound categories. Results show that top brand names have different sound patterns than general brand names. The pattern of differences suggests that sound symbolism may be one factor contributing to brand performance. Sounds more frequent among top brand names have potentially brand enhancing properties, while sounds less frequent may have the opposite effect. These findings should inform best naming practices and strategies.
Survey of public domain software for docking simulations and virtual screening
Progress in functional genomics and structural studies on biological macromolecules are generating a growing number of potential targets for therapeutics, adding to the importance of computational approaches for small molecule docking and virtual screening of candidate compounds. In this review, recent improvements in several public domain packages that are widely used in the context of drug development, including DOCK, AutoDock, AutoDock Vina and Screening for Ligands by Induced-fit Docking Efficiently (SLIDE) are surveyed. The authors also survey methods for the analysis and visualisation of docking simulations, as an important step in the overall assessment of the results. In order to illustrate the performance and limitations of current docking programs, the authors used the National Center for Toxicological Research (NCTR) oestrogen receptor benchmark set of 232 oestrogenic compounds with experimentally measured strength of binding to oestrogen receptor alpha. The methods tested here yielded a correlation coefficient of up to 0.6 between the predicted and observed binding affinities for active compounds in this benchmark.
An observational study of Internet behaviours for adolescent females following sexual abuse
Child sexual abuse (CSA) is associated with revictimization and sexual risk-taking behaviours. The Internet has increased the opportunities for teens to access sexually explicit imagery and has provided new avenues for victimization and exploitation. Online URL activity and offline psychosocial factors were assessed for 460 females aged 12–16 (CSA = 156; comparisons = 304) with sexual behaviours and Internet-initiated victimization assessed 2 years later. Females who experienced CSA did not use more pornography than comparisons but were at increased odds of being cyberbullied (odds ratio = 2.84, 95% confidence interval = 1.67–4.81). These females were also more likely to be represented in a high-risk latent profile characterized by heightened URL activity coupled with problematic psychosocial factors, which showed increased odds of being cyberbullied, receiving online sexual solicitations and heightened sexual activity. While Internet activity alone may not confer risk, results indicate a subset of teens who have experienced CSA for whom both online and offline factors contribute to problematic outcomes.An observational study of adolescent females’ Internet use reveals how online behaviours coupled with offline psychosocial and contextual factors are associated with subsequent vulnerability to Internet-initiated victimization.
Correction: The Genomics Research and Innovation Network: creating an interoperable, federated, genomics learning system
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors
Analysis of the human hematopoietic progenitor compartment is being transformed by single-cell multimodal approaches. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) enables coupled surface protein and transcriptome profiling, thereby revealing genomic programs underlying progenitor states. To perform CITE-seq systematically on primary human bone marrow cells, we used titrations with 266 CITE-seq antibodies (antibody-derived tags) and machine learning to optimize a panel of 132 antibodies. Multimodal analysis resolved >80 stem, progenitor, immune, stromal and transitional cells defined by distinctive surface markers and transcriptomes. This dataset enables flow cytometry solutions for in silico-predicted cell states and identifies dozens of cell surface markers consistently detected across donors spanning race and sex. Finally, aligning annotations from this atlas, we nominate normal marrow equivalents for acute myeloid leukemia stem cell populations that differ in clinical response. This atlas serves as an advanced digital resource for hematopoietic progenitor analyses in human health and disease. In this Resource article, the authors integrate genomic, bioinformatic and flow cytometric data from human bone marrow to provide an atlas of hematopoietic progenitor cell states in health and disease.
LungMAP Portal Ecosystem: Systems-level Exploration of the Lung
An improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular imaging, and pathological datasets. To centralize and standardize information across broad lung research efforts, we expanded the LungMAP.net website into a new gateway portal. This portal connects a broad spectrum of research networks, bulk and single-cell multiomics data, and a diverse collection of image data that span mammalian lung development and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances, including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, and mouse) to enable consistent queries across technologies, cohorts, age, disease, and drug treatment. These atlases are provided as independent and integrated queryable datasets, with an emphasis on dynamic visualization, figure generation, reanalysis, cell-type curation, and automated reference-based classification of user-provided single-cell genomics datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, supported data types, data portals and datasets from LungMAP, and external research efforts.