Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"Koyama, Haruka"
Sort by:
Nucleophilic Aromatic Substitution of Polyfluoroarene to Access Highly Functionalized 10-Phenylphenothiazine Derivatives
2021
Nucleophilic aromatic substitution (SNAr) reactions can provide metal-free access to synthesize monosubstituted aromatic compounds. We developed efficient SNAr conditions for p-selective substitution of polyfluoroarenes with phenothiazine in the presence of a mild base to afford the corresponding 10-phenylphenothiazine (PTH) derivatives. The resulting polyfluoroarene-bearing PTH derivatives were subjected to a second SNAr reaction to generate highly functionalized PTH derivatives with potential applicability as photocatalysts for the reduction of carbon–halogen bonds.
Journal Article
Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats
by
Maegawa, Kenta
,
Yokota, Atsushi
,
Ishizuka, Satoshi
in
Acclimation
,
Acclimatization
,
Accumulation
2022
Enterohepatic circulation of 12α-hydroxylated (12αOH) bile acid (BA) is enhanced depending on the energy intake in high-fat diet-fed rats. Such BA metabolism can be reproduced using a diet supplemented with cholic acid (CA), which also induces simple steatosis, without inflammation and fibrosis, accompanied by some other symptoms that are frequently observed in the condition of non-alcoholic fatty liver in rats. We investigated whether supplementation of the diet with raffinose (Raf) improves hepatic lipid accumulation induced by the CA-fed condition in rats. After acclimation to the AIN-93-based control diet, male Wistar rats were fed diets supplemented with a combination of Raf (30 g/kg diet) and/or CA (0·5 g/kg diet) for 4 weeks. Dietary Raf normalised hepatic TAG levels (two-way ANOVA P < 0·001 for CA, P = 0·02 for Raf and P = 0·004 for interaction) in the CA-supplemented diet-fed rats. Dietary Raf supplementation reduced hepatic 12αOH BA concentration (two-way ANOVA P < 0·001 for CA, P = 0·003 for Raf and P = 0·03 for interaction). The concentration of 12αOH BA was reduced in the aortic and portal plasma. Raf supplementation increased acetic acid concentration in the caecal contents (two-way ANOVA P = 0·001 as a main effect). Multiple regression analysis revealed that concentrations of aortic 12αOH BA and caecal acetic acid could serve as predictors of hepatic TAG concentration (R
2 = 0·55, P < 0·001). However, Raf did not decrease the secondary 12αOH BA concentration in the caecal contents as well as the transaminase activity in the CA diet-fed rats. These results imply that dietary Raf normalises hepatic lipid accumulation via suppression of enterohepatic 12αOH BA circulation.
Journal Article
Wetting regulates autophagy of phase-separated compartments and the cytosol
2021
Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid–liquid phase separation
1
,
2
, but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy
3
,
4
, a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes
5
–
7
. Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or ‘fluidophagy’. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes
8
or as specific autophagy substrates
9
–
11
. We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization.
A theoretical model, in vitro reconstitution and in vivo experimentation show that competition between droplet surface tension and membrane sheet instability dictates the form and function of autophagosomal membranes.
Journal Article
A case of Bloom syndrome manifesting with therapy-related myelodysplastic syndromes harboring a novel BLM gene variant
by
Kunimoto, Hiroyoshi
,
Koshimizu, Eriko
,
Matsumoto, Kenji
in
Adult
,
Alleles
,
Azacitidine - adverse effects
2024
Bloom syndrome (BS) is an autosomal recessive genetic disorder caused by variants in the BLM gene. BS is characterized by distinct facial features, elongated limbs, and various dermatological complications including photosensitivity, poikiloderma, and telangiectatic erythema. The BLM gene encodes a RecQ helicase critical for genome maintenance, stability, and repair, and a deficiency in functional BLM protein leads to genomic instability and high predisposition to various types of cancers, particularly hematological and gastrointestinal malignancies. Here, we report a case of BS with a previously unreported variant in the BLM gene. The patient was a 34-year-old woman who presented with short stature, prominent facial features, and a history of malignancies, including lymphoma, breast cancer, and myelodysplastic syndromes (MDS). She was initially treated with azacitidine for MDS and showed transient improvement, but eventually died at age of 35 due to progression of MDS. Genetic screening revealed compound heterozygous variants in the BLM gene, with a recurrent variant previously reported in BS in one allele and a previously unreported variant in the other allele. Based on her characteristic clinical features and the presence of heterozygous variants in the BLM gene, she was diagnosed with BS harboring compound heterozygous BLM variants.
Journal Article
Metformin ameliorates the severity of experimental Alport syndrome
by
Kojima, Haruka
,
Ohtsuki, Sumio
,
Suico, Mary Ann
in
692/4022
,
692/4022/1585/104
,
692/4022/1585/2759
2021
Metformin is widely used for the treatment of type 2 diabetes, and increasing numbers of studies have shown that metformin also ameliorates tumor progression, inflammatory disease, and fibrosis. However, the ability of metformin to improve non-diabetic glomerular disease and chronic kidney disease (CKD) has not been explored. To investigate the effect of metformin on non-diabetic glomerular disease, we used a mouse model of Alport syndrome (
Col4a5
G5X) which were treated with metformin or losartan, used as a control treatment. We also investigated the effect of metformin on adriamycin-induced glomerulosclerosis model. Pathological and biochemical analysis showed that metformin or losartan suppressed proteinuria, renal inflammation, fibrosis, and glomerular injury and extended the lifespan in Alport syndrome mice. Transcriptome analysis showed that metformin and losartan influenced molecular pathways-related to metabolism and inflammation. Metformin altered multiple genes including metabolic genes not affected by losartan. Metformin also suppressed proteinuria and glomerular injury in the adriamycin-induced glomerulosclerosis mouse model. Our results showed that metformin ameliorates the glomerular sclerosis and CKD phenotype in non-diabetic chronic glomerular diseases. Metformin may have therapeutic potential for not only diabetic nephropathy but also non-diabetic glomerular disease including Alport syndrome.
Journal Article
A Regulatory Cascade Involving Class II ETHYLENE RESPONSE FACTOR Transcriptional Repressors Operates in the Progression of Leaf Senescence
by
Ohme-Takagi, Masaru
,
Ohta, Masaru
,
Mitsuda, Nobutaka
in
Antibodies
,
Arabidopsis - physiology
,
Arabidopsis Proteins - genetics
2013
Leaf senescence is the final process of leaf development that involves the mobilization of nutrients from old leaves to newly growing tissues. Despite the identification of several transcription factors involved in the regulation of this process, the mechanisms underlying the progression of leaf senescence are largely unknown. Herein, we describe the proteasome-mediated regulation of class II ETHYLENE RESPONSE FACTOR (ERF) transcriptional repressors and involvement of these factors in the progression of leaf senescence in Arabidopsis (Arabidopsis thaliana). Based on previous results showing that the tobacco (Nicotiana tabacum) ERF3 (NtERF3) specifically interacts with a ubiquitin-conjugating enzyme, we examined the stability of NtERF3 in vitro and confirmed its rapid degradation by plant protein extracts. Furthermore, NtERF3 accumulated in plants treated with a proteasome inhibitor. The Arabidopsis class II ERFs AtERF4 and AtERF8 were also regulated by the proteasome and increased with plant aging. Transgenic Arabidopsis plants with enhanced expression of NtERF3, AtERF4, or AtERF8 showed precocious leaf senescence. Our gene expression and chromatin immunoprecipitation analyses suggest that AtERF4 and AtERF8 targeted the EPITHIOSPECIFIER PROTEIN/EPITHIOSPECIFYING SENESCENCE REGULATOR gene and regulated the expression of many genes involved in the progression of leaf senescence. By contrast, an aterf4 aterf8 double mutant exhibited delayed leaf senescence. Our results provide insight into the important role of class II ERFs in the progression of leaf senescence.
Journal Article
Transcriptome analysis of umbilical cord mesenchymal stem cells revealed fetal programming due to chorioamnionitis
2022
Although chorioamnionitis (CAM) has been demonstrated to be associated with numerous short- and long-term morbidities, the precise mechanisms remain unclear. One of the reasons for this is the lack of appropriate models for analyzing the relationship between the fetal environment and chorioamnionitis and fetal programming in humans. In this study, we aimed to clarify the fetal programming caused by CAM using the gene expression profiles of UCMSCs. From nine preterm neonates with CAM (n = 4) or without CAM (n = 5), we established UCMSCs. The gene expression profiles obtained by RNA-seq analysis revealed distinctive changes in the CAM group USMSCs. The UCMSCs in the CAM group had a myofibroblast-like phenotype with significantly increased expression levels of myofibroblast-related genes, including α-smooth muscle actin (
p
< 0.05). In the pathway analysis, the genes involved in DNA replication and G1 to S cell cycle control were remarkably decreased, suggesting that cellular proliferation was impaired, as confirmed by the cellular proliferation assay (
p
< 0.01–0.05). Pathway analysis revealed that genes related to white fat cell differentiation were significantly increased. Our results could explain the long-term outcomes of patients who were exposed to CAM and revealed that UCMSCs could be an in vitro model of fetal programming affected by CAM.
Journal Article
Time definition of reintubation most relevant to patient outcomes in critically ill patients: a multicenter cohort study
2023
Background
Reintubation is a common complication in critically ill patients requiring mechanical ventilation. Although reintubation has been demonstrated to be associated with patient outcomes, its time definition varies widely among guidelines and in the literature. This study aimed to determine the association between reintubation and patient outcomes as well as the consequences of the time elapsed between extubation and reintubation on patient outcomes.
Methods
This was a multicenter retrospective cohort study of critically ill patients conducted between April 2015 and March 2021. Adult patients who underwent mechanical ventilation and extubation in intensive care units (ICUs) were investigated utilizing the Japanese Intensive Care PAtient Database. The primary and secondary outcomes were in-hospital and ICU mortality. The association between reintubation and clinical outcomes was studied using Cox proportional hazards analysis. Among the patients who underwent reintubation, a Cox proportional hazard analysis was conducted to evaluate patient outcomes according to the number of days from extubation to reintubation.
Results
Overall, 184,705 patients in 75 ICUs were screened, and 1849 patients underwent reintubation among 48,082 extubated patients. After adjustment for potential confounders, multivariable analysis revealed a significant association between reintubation and increased in-hospital and ICU mortality (adjusted hazard ratio [HR] 1.520, 95% confidence interval [CI] 1.359–1.700, and adjusted HR 1.325, 95% CI 1.076–1.633, respectively). Among the reintubated patients, 1037 (56.1%) were reintubated within 24 h after extubation, 418 (22.6%) at 24–48 h, 198 (10.7%) at 48–72 h, 111 (6.0%) at 72–96 h, and 85 (4.6%) at 96–120 h. Multivariable Cox proportional hazard analysis showed that in-hospital and ICU mortality was highest in patients reintubated at 72–96 h (adjusted HR 1.528, 95% CI 1.062–2.197, and adjusted HR 1.334, 95% CI 0.756–2.352, respectively; referenced to reintubation within 24 h).
Conclusions
Reintubation was associated with a significant increase in in-hospital and ICU mortality. The highest mortality rates were observed in patients who were reintubated between 72 and 96 h after extubation. Further studies are warranted for the optimal observation of extubated patients in clinical practice and to strengthen the evidence for mechanical ventilation.
Journal Article
Adverse Effects of High Temperature On Mammary Alveolar Development In Vitro
2022
In the mammary glands during pregnancy, the alveolar buds are first branched from the mammary ducts after which they form the alveolar luminal structure for milk production postparturition. Body temperature could increase for several reasons, such as infectious disease and heat stress. We have previously reported that high temperature adversely effects on the lactation capacity of mouse mammary epithelial cells (MECs). However, it remains unclear how high temperature influences mammary morophogenesis during pregnancy. In this study, we investigated the effects of high temperature on this mammary alveolar development process using two types of culture models including embedded organoids of MECs in Matrigel; these models reproduced mammary alveolar bud induction and alveolar luminal formation. Results showed that a culture temperature of 41 °C repressed alveolar bud induction and inhibited alveolar luminal formation. In addition, the treatment at 41 °C decreased the number of proliferating mammary epithelial cells but did not affect cell migration. Levels of phosphorylated Akt, -ERK1/2, -HSP90, and -HSP27 were increased in organoids cultured at 41 °C. The specific inhibitors of HSP90 and HSP27 exacerbated the disruption of organoids at 41 °C but not at 37 °C. Furthermore, the organoids precultured at 37 and 41 °C in the alveolar luminal formation model showed differences in the expression levels of caseins and tight junction proteins, which express in MECs in lactating mammary glands, after induction of MEC differentiation by prolactin and dexamethasone treatment in vitro. These results suggest that elevated temperature directly hinders mammary alveolar development; however, heat shock proteins may mitigate the adverse effects of high temperatures.
Journal Article
Impact of a history of cardiovascular disease and physical activity habits on the incidence of functional disability
2023
We examined the impact of a history of coronary artery disease (CAD) or cerebrovascular disease (CVD) and physical activity habits on functional disability among community-dwelling Japanese adults. This population-based retrospective cohort study included 10,661 people aged 39–98 years in Japan (5054, men). Median follow-up was 3.7 years. During the study period, 209 functional disabilities occurred in the overall study population. In multivariable analysis, a history of CVD (hazard ratio [HR] 1.57 [95% CI: 1.00–2.45]) and no physical activity habit (HR 1.74 [1.27–2.39]) presented increased risks for functional disability. HRs for functional disability among patients with a CVD history with and without a physical activity habit were 1.68 (0.75–3.74) and 2.65 (1.49–4.71), respectively, compared with individuals without a history of CVD with a physical activity habit. Similar results were observed for CAD. We found no significant difference in the incidence of functional disability between the group with a history of CAD or CVD and physical activity habits and the group with no history of CAD or CVD and without physical activity habits. Physical activity habits had a favorable influence on avoiding functional disability regardless of a history of CAD or CVD. Future prospective studies are needed to clarify these associations.
Journal Article