Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
142
result(s) for
"Kozerke, Sebastian"
Sort by:
Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia
by
Bai Wenjia
,
Kofler, Andreas
,
Schreiber, Laura
in
Cardiovascular disease
,
Coronary vessels
,
Flow velocity
2020
Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. In this Consensus Statement, the authors summarize the use of SPECT, PET, MRI, echocardiography, CT and invasive coronary flow and pressure measurement, and describe the relative strengths and weaknesses of each modality.
Journal Article
Deep variational network for rapid 4D flow MRI reconstruction
2020
Phase-contrast magnetic resonance imaging (MRI) provides time-resolved quantification of blood flow dynamics that can aid clinical diagnosis. Long in vivo scan times due to repeated three-dimensional (3D) volume sampling over cardiac phases and breathing cycles necessitate accelerated imaging techniques that leverage data correlations. Standard compressed sensing reconstruction methods require tuning of hyperparameters and are computationally expensive, which diminishes the potential reduction of examination times. We propose an efficient model-based deep neural reconstruction network and evaluate its performance on clinical aortic flow data. The network is shown to reconstruct undersampled 4D flow MRI data in under a minute on standard consumer hardware. Remarkably, the relatively low amounts of tunable parameters allowed the network to be trained on images from 11 reference scans while generalizing well to retrospective and prospective undersampled data for various acceleration factors and anatomies.
4D MRI scans can reconstruct cardiovascular flow, although they typically take many minutes, hindering real-time assessment. Vishnevskiy et al. develop a deep variational network to permit high-fidelity image reconstruction in a matter of seconds, allowing integration of 4D flow MRI into clinical workflows.
Journal Article
A unifying view on extended phase graphs and Bloch simulations for quantitative MRI
by
Amthor, Thomas
,
Doneva, Mariya
,
Guenthner, Christian
in
639/166/985
,
639/766/25
,
Approximation
2021
Quantitative MRI methods and learning-based algorithms require exact forward simulations. One critical factor to correctly describe magnetization dynamics is the effect of slice-selective RF pulses. While contemporary simulation techniques correctly capture their influence, they only provide final magnetization distributions, require to be run for each parameter set separately, and make it hard to derive general theoretical conclusions and to generate a fundamental understanding of echo formation in the presence of slice-profile effects. This work aims to provide a mathematically exact framework, which is equally intuitive as extended phase graphs (EPGs), but also considers slice-profiles through their natural spatial representation. We show, through an analytical, hybrid Bloch-EPG formalism, that the spatially-resolved EPG approach allows to exactly predict the signal dependency on off-resonance, spoiling moment, microscopic dephasing, and echo time. We also demonstrate that our formalism allows to use the same phase graph to simulate both gradient-spoiled and balanced SSFP-based MR sequences. We present a derivation of the formalism and identify the connection to existing methods, i.e. slice-selective Bloch, slice-selective EPG, and the partitioned EPG. As a use case, the proposed hybrid Bloch-EPG framework is applied to MR Fingerprinting.
Journal Article
A biphasic multilayer computational model of human skin
2021
The present study investigates the layer-specific mechanical behavior of human skin. Motivated by skin’s histology, a biphasic model is proposed which differentiates between epidermis, papillary and reticular dermis, and hypodermis. Inverse analysis of ex vivo tensile and in vivo suction experiments yields mechanical parameters for each layer and predicts a stiff reticular dermis and successively softer papillary dermis, epidermis and hypodermis. Layer-specific analysis of simulations underlines the dominating role of the reticular dermis in tensile loading. Furthermore, it shows that the observed out-of-plane deflection in ex vivo tensile tests is a direct consequence of the layered structure of skin. In in vivo suction experiments, the softer upper layers strongly influence the mechanical response, whose dissipative part is determined by interstitial fluid redistribution within the tissue. Magnetic resonance imaging-based visualization of skin deformation in suction experiments confirms the deformation pattern predicted by the multilayer model, showing a consistent decrease in dermal thickness for large probe opening diameters.
Journal Article
Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities
2019
Background
Volumetric quantification of mean and fluctuating velocity components of transient and turbulent flows promises a comprehensive characterization of valvular and aortic flow characteristics. Data acquisition using standard navigator-gated 4D Flow cardiovascular magnetic resonance (CMR) is time-consuming and actual scan times depend on the breathing pattern of the subject, limiting the applicability of the method in a clinical setting.
We sought to develop a 5D Flow CMR framework which combines undersampled data acquisition including multipoint velocity encoding with low-rank image reconstruction to provide cardiac- and respiratory-motion resolved assessment of velocity maps and turbulent kinetic energy in fixed scan times.
Methods
Data acquisition and data-driven motion state detection was performed using an undersampled Cartesian tiny Golden angle approach. Locally low-rank (LLR) reconstruction was implemented to exploit correlations among heart phases and respiratory motion states. To ensure accurate quantification of mean and turbulent velocities, a multipoint encoding scheme with two velocity encodings per direction was incorporated. Velocity-vector fields and turbulent kinetic energy (TKE) were obtained using a Bayesian approach maximizing the posterior probability given the measured data. The scan time of 5D Flow CMR was set to 4 min.
5D Flow CMR with acceleration factors of 19 .0 ± 0.21 (mean ± std) and velocity encodings (VENC) of 0.5 m/s and 1.5 m/s per axis was compared to navigator-gated 2x SENSE accelerated 4D Flow CMR with VENC = 1.5 m/s in 9 subjects. Peak velocities and peak flow were compared and magnitude images, velocity and TKE maps were assessed.
Results
While net scan time of 5D Flow CMR was 4 min independent of individual breathing patterns, the scan times of the standard 4D Flow CMR protocol varied depending on the actual navigator gating efficiency and were 17.8 ± 3.9 min on average. Velocity vector fields derived from 5D Flow CMR in the end-expiratory state agreed well with data obtained from the navigated 4D protocol (normalized root-mean-square error 8.9 ± 2.1%). On average, peak velocities assessed with 5D Flow CMR were higher than for the 4D protocol (3.1 ± 4.4%).
Conclusions
Respiratory-motion resolved multipoint 5D Flow CMR allows mapping of mean and turbulent velocities in the aorta in 4 min.
Journal Article
Optimizing encoding strategies for 4D Flow MRI of mean and turbulent flow
by
Kozerke, Sebastian
,
Dirix, Pietro
,
Buoso, Stefano
in
4D Flow MRI
,
639/766/189
,
692/4019/592/75
2024
For 4D Flow MRI of mean and turbulent flow a compromise between spatiotemporal undersampling and velocity encodings needs to be found. Assuming a fixed scan time budget, the impact of trading off spatiotemporal undersampling versus velocity encodings on quantification of velocity and turbulence for aortic 4D Flow MRI was investigated. For this purpose, patient-specific mean and turbulent aortic flow data were generated using computational fluid dynamics which were embedded into the patient-specific background image data to generate synthetic MRI data with corresponding ground truth flow. Cardiac and respiratory motion were included. Using the synthetic MRI data as input, 4D Flow MRI was subsequently simulated with undersampling along pseudo-spiral Golden angle Cartesian trajectories for various velocity encoding schemes. Data were reconstructed using a locally low rank approach to obtain mean and turbulent flow fields to be compared to ground truth. Results show that, for a 15-min scan, velocity magnitudes can be reconstructed with good accuracy relatively independent of the velocity encoding scheme (
S
S
I
M
U
=
0.938
±
0.003
)
, good accuracy (
S
S
I
M
U
≥
0.933
) and with peak velocity errors limited to 10%. Turbulence maps on the other hand suffer from both lower reconstruction quality (
S
S
I
M
TKE
≥
0.323
) and larger sensitivity to undersampling, motion and velocity encoding strengths (
S
S
I
M
TKE
=
0.570
±
0.110
)
when compared to velocity maps. The best compromise to measure unwrapped velocity maps and turbulent kinetic energy given a fixed 15-min scan budget was found to be a 7-point multi-
V
enc
acquisition with a low
V
enc
tuned for best sensitivity to the range of expected intra-voxel standard deviations and a high
V
enc
larger than the expected peak velocity.
Journal Article
Comparing low-field cryogenic nuclear relaxation of hyperpolarized diamond and silicon particles
by
Ernst, Matthias
,
Kozerke, Sebastian
,
von Witte, Gevin
in
639/166/985
,
639/638/440/94
,
639/766/25
2025
We report on field cycling experiments with hyperpolarized diamond and silicon particles between 10 mT and 3.4 T at temperatures below 10 K. Diamonds with approximately 54 ppm defects, of which around 58% were P1 centers, were hyperpolarized by continuous-wave dynamic nuclear polarization (DNP) at 3.4 T. For fields above 200 mT, the
13
C relaxation in diamond was measured to be nearly independent of the magnetic field. At around 200 mT, the field dependence changed and
was approximately proportional to the field strength. For example, the relaxation time decreased approximately threefold by reducing the main magnetic field from 200 mT to 75 mT. The
13
C relaxation was measured to be independent of the DNP polarization time and nuclear hyperpolarization levels. In contrast, the relaxation of hyperpolarized silicon was found to be independent of the field strength down to a few mT, despite a relatively short time for DNP build-up. The results suggest that magnetic fields greater than approximately 200 mT are required for hyperpolarized diamonds with several ppm of (nitrogen) defects to ensure sufficiently long relaxation times.
Journal Article
Synthesis of patient-specific multipoint 4D flow MRI data of turbulent aortic flow downstream of stenotic valves
2022
We propose to synthesize patient-specific 4D flow MRI datasets of turbulent flow paired with ground truth flow data to support training of inference methods. Turbulent blood flow is computed based on the Navier–Stokes equations with moving domains using realistic boundary conditions for aortic shapes, wall displacements and inlet velocities obtained from patient data. From the simulated flow, synthetic multipoint 4D flow MRI data is generated with user-defined spatiotemporal resolutions and reconstructed with a Bayesian approach to compute time-varying velocity and turbulence maps. For MRI data synthesis, a fixed hypothetical scan time budget is assumed and accordingly, changes to spatial resolution and time averaging result in corresponding scaling of signal-to-noise ratios (SNR). In this work, we focused on aortic stenotic flow and quantification of turbulent kinetic energy (TKE). Our results show that for spatial resolutions of 1.5 and 2.5 mm and time averaging of 5 ms as encountered in 4D flow MRI in practice, peak total turbulent kinetic energy downstream of a 50, 75 and 90% stenosis is overestimated by as much as 23, 15 and 14% (1.5 mm) and 38, 24 and 23% (2.5 mm), demonstrating the importance of paired ground truth and 4D flow MRI data for assessing accuracy and precision of turbulent flow inference using 4D flow MRI exams.
Journal Article
MRXCAT2.0: Synthesis of realistic numerical phantoms by combining left-ventricular shape learning, biophysical simulations and tissue texture generation
by
Kozerke, Sebastian
,
Buoso, Stefano
,
Schulthess, Nico
in
Cardiac function
,
Cardiomyopathy
,
Datasets
2023
BackgroundStandardised performance assessment of image acquisition, reconstruction and processing methods is limited by the absence of images paired with ground truth reference values. To this end, we propose MRXCAT2.0 to generate synthetic data, covering healthy and pathological function, using a biophysical model. We exemplify the approach by generating cardiovascular magnetic resonance (CMR) images of healthy, infarcted, dilated and hypertrophic left-ventricular (LV) function.MethodIn MRXCAT2.0, the XCAT torso phantom is coupled with a statistical shape model, describing population (patho)physiological variability, and a biophysical model, providing known and detailed functional ground truth of LV morphology and function. CMR balanced steady-state free precession images are generated using MRXCAT2.0 while realistic image appearance is ensured by assigning texturized tissue properties to the phantom labels.FindingPaired CMR image and ground truth data of LV function were generated with a range of LV masses (85–140 g), ejection fractions (34–51%) and peak radial and circumferential strains (0.45 to 0.95 and − 0.18 to − 0.13, respectively). These ranges cover healthy and pathological cases, including infarction, dilated and hypertrophic cardiomyopathy. The generation of the anatomy takes a few seconds and it improves on current state-of-the-art models where the pathological representation is not explicitly addressed. For the full simulation framework, the biophysical models require approximately two hours, while image generation requires a few minutes per slice.ConclusionMRXCAT2.0 offers synthesis of realistic images embedding population-based anatomical and functional variability and associated ground truth parameters to facilitate a standardized assessment of CMR acquisition, reconstruction and processing methods.
Journal Article
Quantitative Analysis of Vortical Blood Flow in the Thoracic Aorta Using 4D Phase Contrast MRI
by
Giese, Daniel
,
Bunck, Alexander Christian
,
Kozerke, Sebastian
in
Absolute vorticity
,
Algorithms
,
Aorta
2015
Phase contrast MRI allows for the examination of complex hemodynamics in the heart and adjacent great vessels. Vortex flow patterns seem to play an important role in certain vascular pathologies. We propose two- and three-dimensional metrics for the objective quantification of aortic vortex blood flow in 4D phase contrast MRI.
For two-dimensional vorticity assessment, a standardized set of 6 regions-of-interest (ROIs) was defined throughout the course of the aorta. For each ROI, a heatmap of time-resolved vorticity values [Formula: see text] was computed. Evolution of minimum, maximum, and average values as well as opposing rotational flow components were analyzed. For three-dimensional analysis, vortex core detection was implemented combining the predictor-corrector method with λ2 correction. Strength, elongation, and radial expansion of the detected vortex core were recorded over time. All methods were applied to 4D flow MRI datasets of 9 healthy subjects, 2 patients with mildly dilated aorta, and 1 patient with aortic aneurysm.
Vorticity quantification in the 6 standardized ROIs enabled the description of physiological vortex flow in the healthy aorta. Helical flow developed early in the ascending aorta (absolute vorticity = 166.4±86.4 s-1 at 12% of cardiac cycle) followed by maximum values in mid-systole in the aortic arch (240.1±45.2 s-1 at 16%). Strength, elongation, and radial expansion of 3D vortex cores escalated in early systole, reaching a peak in mid systole (strength = 241.2±30.7 s-1 at 17%, elongation = 65.1±34.6 mm at 18%, expansion = 80.1±48.8 mm2 at 20%), before all three parameters similarly decreased to overall low values in diastole. Flow patterns were considerably altered in patient data: Vortex flow developed late in mid/end-systole close to the aortic bulb and no physiological helix was found in the aortic arch.
We have introduced objective measures for quantification of vortical flow in 4D phase contrast MRI. Vortex blood flow in the thoracic aorta could be consistently described in all healthy volunteers. In patient data, pathologically altered vortex flow was observed.
Journal Article