Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Krah, David L."
Sort by:
Human Sensory Neurons Derived from Induced Pluripotent Stem Cells Support Varicella-Zoster Virus Infection
After primary infection, varicella-zoster virus (VZV) establishes latency in neurons of the dorsal root and trigeminal ganglia. Many questions concerning the mechanism of VZV pathogenesis remain unanswered, due in part to the strict host tropism and inconsistent availability of human tissue obtained from autopsies and abortions. The recent development of induced pluripotent stem (iPS) cells provides great potential for the study of many diseases. We previously generated human iPS cells from skin fibroblasts by introducing four reprogramming genes with non-integrating adenovirus. In this study, we developed a novel protocol to generate sensory neurons from iPS cells. Human iPS cells were exposed to small molecule inhibitors for 10 days, which efficiently converted pluripotent cells into neural progenitor cells (NPCs). The NPCs were then exposed for two weeks to growth factors required for their conversion to sensory neurons. The iPS cell-derived sensory neurons were characterized by immunocytochemistry, flow cytometry, RT-qPCR, and electrophysiology. After differentiation, approximately 80% of the total cell population expressed the neuron-specific protein, βIII-tubulin. Importantly, 15% of the total cell population co-expressed the markers Brn3a and peripherin, indicating that these cells are sensory neurons. These sensory neurons could be infected by both VZV and herpes simplex virus (HSV), a related alphaherpesvirus. Since limited neuronal populations are capable of supporting the entire VZV and HSV life cycles, our iPS-derived sensory neuron model may prove useful for studying alphaherpesvirus latency and reactivation.
Effector and Central Memory Poly-Functional CD4+ and CD8+ T Cells are Boosted upon ZOSTAVAX® Vaccination
ZOSTAVAX(®) is a live attenuated varicella-zoster virus (VZV) vaccine that is licensed for the protection of individuals ≥50 years against shingles and its most common complication, postherpetic neuralgia. While IFNγ responses increase upon vaccination, the quality of the T cell response has not been elucidated. By using polychromatic flow cytometry, we characterized the breadth, magnitude, and quality of ex vivo CD4(+) and CD8(+) T cell responses induced 3-4 weeks after ZOSTAVAX vaccination of healthy adults. We show, for the first time that the highest frequencies of VZV-specific CD4(+) T cells were poly-functional CD154(+)IFNγ(+)IL-2(+)TNFα(+) cells, which were boosted upon vaccination. The CD4(+) T cells were broadly reactive to several VZV proteins, with immediate early (IE) 63 ranking the highest among them in the fold rise of poly-functional cells, followed by IE62, gB, open reading frame (ORF) 9, and gE. We identified a novel poly-functional ORF9-specific CD8(+) T cell population in 62% of the subjects, and these were boosted upon vaccination. Poly-functional CD4(+) and CD8(+) T cells produced significantly higher levels of IFNγ, IL-2, and TNFα compared to mono-functional cells. After vaccination, a boost in the expression of IFNγ by poly-functional IE63- and ORF9-specific CD4(+) T cells and IFNγ, IL-2, and TNFα by ORF9-specific poly-functional CD8(+) T cells was observed. Responding poly-functional T cells exhibited both effector (CCR7(-)CD45RA(-)CD45RO(+)), and central (CCR7(+)CD45RA(-)CD45RO(+)) memory phenotypes, which expressed comparable levels of cytokines. Altogether, our studies demonstrate that a boost in memory poly-functional CD4(+) T cells and ORF9-specific CD8(+) T cells may contribute toward ZOSTAVAX efficacy.
A Simple Antigen-Reduction Assay for the Measurement of Neutralizing Antibodies to Hepatitis A Virus
A simplified hepatitis Avirus (HAY) antigen-reduction neutralization assay (HAVARNA) was developed to permit the measurement of biologically active antibodies in recipients of candidate HAV vaccines. Degrees of neutralization were measured from the reduction in the amount of HAV antigen synthesized by 7–10 days after infection of MRC-5 (fetal human diploid lung) cell cultures. Sera producing a ⩾50% reduction in viral infectivity were scored as neutralizing. The assaywas applied to demonstrate serum HAV neutralizing activity in 10 of 10 and 9 of 10 recipients of 107 and 106 TCID50 doses, respectively, of the Merck CR326F(F′ variant) live attenuated vaccine. The dilution end points of selected sera ranged from 1:10 to 1:640. The dilution end point of the World Health Organization reference globulin no. 1 was 1:530,000 (0.2 mlU/ml of HAV antibody). The HAVARNA provideda rapid, sensitive, and reproducible means to measure neutralizing antibodies to HAV.
Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study
The recombinant vesicular stomatitis virus (rVSV) vaccine expressing the Zaire Ebola virus (ZEBOV) glycoprotein is efficacious in the weeks following single-dose injection, but duration of immunity is unknown. We aimed to assess antibody persistence at 1 and 2 years in volunteers who received single-dose rVSV-ZEBOV in three previous trials. In this observational cohort study, we prospectively followed-up participants from the African and European phase 1 rVSV-ZEBOV trials, who were vaccinated once in 2014–15 with 300 000 (low dose) or 10–50 million (high dose) plaque-forming units (pfu) of rVSV-ZEBOV vaccine to assess ZEBOV glycoprotein (IgG) antibody persistence. The primary outcome was ZEBOV glycoprotein-specific IgG geometric mean concentrations (GMCs) measured yearly by ELISA compared with 1 month (ie, 28 days) after immunisation. We report GMCs up to 2 years (Geneva, Switzerland, including neutralising antibodies up to 6 months) and 1 year (Lambaréné, Gabon; Kilifi, Kenya) after vaccination and factors associated with higher antibody persistence beyond 6 months, according to multivariable analyses. Trials and the observational study were registered at ClinicalTrials.gov (Geneva: NCT02287480 and NCT02933931; Kilifi: NCT02296983) and the Pan-African Clinical Trials Registry (Lambaréné PACTR201411000919191). Of 217 vaccinees from the original studies (102 from the Geneva study, 75 from the Lambaréné study, and 40 from the Kilifi study), 197 returned and provided samples at 1 year (95 from the Geneva study, 63 from the Lambaréné, and 39 from the Kilifi study) and 90 at 2 years (all from the Geneva study). In the Geneva group, 44 (100%) of 44 participants who had been given a high dose (ie, 10–50 million pfu) of vaccine and who were seropositive at day 28 remained seropositive at 2 years, whereas 33 (89%) of 37 who had been given the low dose (ie, 300 000 pfu) remained seropositive for 2 years (p=0·042). In participants who had received a high dose, ZEBOV glycoprotein IgG GMCs decreased significantly between their peak (at 1–3 months) and month 6 after vaccination in Geneva (p<0·0001) and Lambaréné (p=0·0298) but not in Kilifi (p=0·5833) and subsequently remained stable at all sites apart from Geneva, where GMC in those given a high dose of vaccine increased significantly between 6 months and 1 year (p=0·0264). Antibody persistence was similar at 1 year and at 6 months in those who had received a low dose of vaccine, with lower titres among participants from the Geneva study at 2 years than at 1 year after vaccination (GMC ratio 0·61, 95% CI 0·49–0·77; p<0·0001). In multivariable analyses, predictors of increased IgG GMCs beyond 6 months included high-dose versus low-dose vaccination (Geneva p=0·0133; Lambaréné p=0·008) and vaccine-related arthritis (p=0·0176), but not sex, age, or baseline seropositivity (all p>0·05). Neutralising antibodies seem to be less durable, with seropositivity dropping from 64–71% at 28 days to 27–31% at 6 months in participants from the Geneva study. Antibody responses to single-dose rVSV-ZEBOV vaccination are sustained across dose ranges and settings, a key criterion in countries where booster vaccinations would be impractical. The Wellcome Trust and Innovative Medicines Initiative 2 Joint Undertaking.
Lactate transport inhibition therapeutically reprograms fibroblast metabolism in experimental pulmonary fibrosis
Myofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal that inhibiting MCT1 or MCT4 reduces TGFβ-stimulated pulmonary myofibroblast differentiation and decreases bleomycin-induced pulmonary fibrosis . Through comprehensive metabolic analyses, including bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice, with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited therapeutic options currently exist.