Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
33
result(s) for
"Kraitchman, Dara L."
Sort by:
Validation of a low-cost, carbon dioxide-based cryoablation system for percutaneous tumor ablation
2019
Breast cancer rates are rising in low- and middle-income countries (LMICs), yet there is a lack of accessible and cost-effective treatment. As a result, the cancer burden and death rates are highest in LMICs. In an effort to meet this need, our work presents the design and feasibility of a low-cost cryoablation system using widely-available carbon dioxide as the only consumable. This system uses an 8-gauge outer-diameter needle and Joule-Thomson expansion to percutaneously necrose tissue with cryoablation. Bench top experiments characterized temperature dynamics in ultrasound gel demonstrated that isotherms greater than 2 cm were formed. Further, this system was applied to mammary tumors in an in vivo rat model and necrosis was verified by histopathology. Finally, freezing capacity under a large heat load was assessed with an in vivo porcine study, where volumes of necrosis greater than 1.5 cm in diameter confirmed by histopathology were induced in a highly perfused liver after two 7-minute freeze cycles. These results demonstrate the feasibility of a carbon-dioxide based cryoablation system for improving solid tumor treatment options in resource-constrained environments.
Journal Article
Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer
by
Attaluri, Anilchandra
,
Ivkov, Robert
,
Kraitchman, Dara L.
in
Ablation
,
Cancer
,
Cancer therapies
2022
For patients diagnosed with advanced and unresectable hepatocellular carcinoma (HCC), liver transplantation remains the best option to extend life. Challenges with organ supply often preclude liver transplantation, making palliative non-surgical options the default front-line treatments for many patients. Even with imaging guidance, success following treatment remains inconsistent and below expectations, so new approaches are needed. Imaging-guided thermal therapy interventions have emerged as attractive procedures that offer individualized tumor targeting with the potential for the selective targeting of tumor nodules without impairing liver function. Furthermore, imaging-guided thermal therapy with added standard-of-care chemotherapies targeted to the liver tumor can directly reduce the overall dose and limit toxicities commonly seen with systemic administration. Effectiveness of non-ablative thermal therapy (hyperthermia) depends on the achieved thermal dose, defined as time-at-temperature, and leads to molecular dysfunction, cellular disruption, and eventual tissue destruction with vascular collapse. Hyperthermia therapy requires controlled heat transfer to the target either by in situ generation of the energy or its on-target conversion from an external radiative source. Magnetic hyperthermia (MHT) is a nanotechnology-based thermal therapy that exploits energy dissipation (heat) from the forced magnetic hysteresis of a magnetic colloid. MHT with magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs) requires the targeted deposition of MNPs into the tumor, followed by exposure of the region to an AMF. Emerging modalities such as magnetic particle imaging (MPI) offer additional prospects to develop fully integrated (theranostic) systems that are capable of providing diagnostic imaging, treatment planning, therapy execution, and post-treatment follow-up on a single platform. In this review, we focus on recent advances in image-guided MHT applications specific to liver cancer
Journal Article
Synthesis of magnetic resonance–, X-ray– and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics
by
Stuber, Matthias
,
Barnett, Brad P
,
Kraitchman, Dara L
in
631/1647/666
,
631/61/51/1844
,
692/700/1421
2011
Cell therapy has the potential to treat or cure a wide variety of diseases. Non-invasive cell tracking techniques are, however, necessary to translate this approach to the clinical setting. This protocol details methods to create microcapsules that are visible by X-ray, ultrasound (US) or magnetic resonance (MR) for the encapsulation and immunoisolation of cellular therapeutics. Three steps are generally used to encapsulate cellular therapeutics in an alginate matrix: (i) droplets of cell-containing liquid alginate are extruded, using an electrostatic generator, through a needle tip into a solution containing a dissolved divalent cation salt to form a solid gel; (ii) the resulting gelled spheres are coated with polycations as a cross-linker; and (iii) these complexes are then incubated in a second solution of alginate to form a semipermeable membrane composed of an inner and an outer layer of alginate. The microcapsules can be rendered visible during the first step by adding contrast agents to the primary alginate layer. Such contrast agents include superparamagnetic iron oxide for detection by
1
H MR imaging (MRI); the radiopaque agents barium or bismuth sulfate for detection by X-ray modalities; or perfluorocarbon emulsions for multimodal detection by
19
F MRI, X-ray and US imaging. The entire synthesis can be completed within 2 h.
Journal Article
Thermal Characterization and Preclinical Feasibility Verification of an Accessible, Carbon Dioxide-Based Cryotherapy System
2024
To investigate the potential of an affordable cryotherapy device for the accessible treatment of breast cancer, the performance of a novel carbon dioxide-based device was evaluated through both benchtop testing and an in vivo canine model. This novel device was quantitatively compared to a commercial device that utilizes argon gas as the cryogen. The thermal behavior of each device was characterized through calorimetry and by measuring the temperature profiles of iceballs generated in tissue phantoms. A 45 min treatment in a tissue phantom from the carbon dioxide device produced a 1.67 ± 0.06 cm diameter lethal isotherm that was equivalent to a 7 min treatment from the commercial argon-based device, which produced a 1.53 ± 0.15 cm diameter lethal isotherm. An in vivo treatment was performed with the carbon dioxide-based device in one spontaneously occurring canine mammary mass with two standard 10 min freezes. Following cryotherapy, this mass was surgically resected and analyzed for necrosis margins via histopathology. The histopathology margin of necrosis from the in vivo treatment with the carbon dioxide device at 14 days post-cryoablation was 1.57 cm. While carbon dioxide gas has historically been considered an impractical cryogen due to its low working pressure and high boiling point, this study shows that carbon dioxide-based cryotherapy may be equivalent to conventional argon-based cryotherapy in size of the ablation zone in a standard treatment time. The feasibility of the carbon dioxide device demonstrated in this study is an important step towards bringing accessible breast cancer treatment to women in low-resource settings.
Journal Article
Yttrium-90 radioembolization as a possible new treatment for brain cancer: proof of concept and safety analysis in a canine model
by
Hui, Ferdinand K
,
Sasicha, Manupipatpong
,
Morris, Meaghan
in
Animal euthanasia
,
Animals
,
Atrophy
2020
PurposeTo evaluate the safety, feasibility, and preliminary efficacy of yttrium-90 (90Y) radioembolization (RE) as a minimally invasive treatment in a canine model with presumed spontaneous brain cancers.MaterialsThree healthy research dogs (R1–R3) and five patient dogs with spontaneous intra-axial brain masses (P1–P5) underwent cerebral artery RE with 90Y glass microspheres (TheraSphere). 90Y-RE was performed on research dogs from the unilateral internal carotid artery (ICA), middle cerebral artery (MCA), and posterior cerebral artery (PCA) while animals with brain masses were treated from the ICA. Post-treatment 90Y PET/CT was performed along with serial neurological exams by a veterinary neurologist. One month after treatment, research dogs were euthanized and the brains were extracted and sent for microdosimetric and histopathologic analyses. Patient dogs received post-treatment MRI at 1-, 3-, and 6-month intervals with long-term veterinary follow-up.ResultsThe average absorbed dose to treated tissue in R1–R3 was 14.0, 30.9, and 73.2 Gy, respectively, with maximum doses exceeding 1000 Gy. One month after treatment, research dog pathologic analysis revealed no evidence of cortical atrophy and rare foci consistent with chronic infarcts, e.g., < 2-mm diameter. Absorbed doses to masses in P1–P5 were 45.5, 57.6, 58.1, 45.4, and 64.1 Gy while the dose to uninvolved brain tissue was 15.4, 27.6, 19.2, 16.7, and 33.3 G, respectively. Among both research and patient animals, 6 developed acute neurologic deficits following treatment. However, in all surviving dogs, the deficits were transient resolving between 7 and 33 days post-therapy. At 1 month post-therapy, patient animals showed a 24–94% reduction in mass volume with partial response in P1, P3, and P4 at 6 months post-treatment. While P2 initially showed a response, by 5 months, the mass had advanced beyond pre-treatment size, and the dog was euthanized.ConclusionThis proof of concept demonstrates the technical feasibility and safety of 90Y-RE in dogs, while preliminary, initial data on the efficacy of 90Y-RE as a potential treatment for brain cancer is encouraging.
Journal Article
Real-Time High-Resolution MRI Endoscopy at up to 10 Frames per Second
by
Kraitchman, Dara L.
,
Karmarkar, Parag
,
Frahm, Jens
in
Animal models
,
Arteriosclerosis
,
Atherosclerosis
2021
Objective . Atherosclerosis is a leading cause of mortality and morbidity. Optical endoscopy, ultrasound, and X-ray offer minimally invasive imaging assessments but have limited sensitivity for characterizing disease and therapeutic response. Magnetic resonance imaging (MRI) endoscopy is a newer idea employing tiny catheter-mounted detectors connected to the MRI scanner. It can see through vessel walls and provide soft-tissue sensitivity, but its slow imaging speed limits practical applications. Our goal is high-resolution MRI endoscopy with real-time imaging speeds comparable to existing modalities. Methods . Intravascular (3 mm) transmit-receive MRI endoscopes were fabricated for highly undersampled radial-projection MRI in a clinical 3-tesla MRI scanner. Iterative nonlinear reconstruction was accelerated using graphics processor units connected via a single ethernet cable to achieve true real-time endoscopy visualization at the scanner. MRI endoscopy was performed at 6-10 frames/sec and 200-300 μ m resolution in human arterial specimens and porcine vessels ex vivo and in vivo and compared with fully sampled 0.3 frames/sec and three-dimensional reference scans using mutual information (MI) and structural similarity (3-SSIM) indices. Results . High-speed MRI endoscopy at 6-10 frames/sec was consistent with fully sampled MRI endoscopy and histology, with feasibility demonstrated in vivo in a large animal model. A 20-30-fold speed-up vs. 0.3 frames/sec reference scans came at a cost of ~7% in MI and ~45% in 3-SSIM, with reduced motion sensitivity. Conclusion . High-resolution MRI endoscopy can now be performed at frame rates comparable to those of X-ray and optical endoscopy and could provide an alternative to existing modalities, with MRI’s advantages of soft-tissue sensitivity and lack of ionizing radiation.
Journal Article
Therapeutic efficacy of an alpha-particle emitter labeled anti-GD2 humanized antibody against osteosarcoma—a proof of concept study
2024
Purpose
Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS.
Methods
The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [
225
Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines.
Results
Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft’s case, tumor growth was delayed by 16–18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively.
Conclusion
This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.
Journal Article
Stem Cell Labeling for Delivery and Tracking Using Noninvasive Imaging
2012,2011
A comprehensive overview of cell therapy imaging, this book emphasizes the use of medical imaging for therapeutic delivery/targeting, cell tracking, and determining therapeutic efficacy. It presents background information and insight on the major classes of stem and progenitor cells and describes the main imaging modalities and state-of-the-art techniques currently employed for stem cell tracking. The book also offers clinical perspectives on existing and potential uses of stem cells as well as the impact of image-guided delivery and tracking in major organ systems.
Anti-GD2 antibody for radiopharmaceutical imaging of osteosarcoma
2022
PurposeOsteosarcoma (OS) is the most frequently diagnosed bone cancer in children with little improvement in overall survival in the past decades. The high surface expression of disialoganglioside GD2 on OS tumors and restricted expression in normal tissues makes it an ideal target for anti-OS radiopharmaceuticals. Since human and canine OS share many biological and molecular features, spontaneously occurring OS in canines has been an ideal model for testing new imaging and treatment modalities for human translation. In this study, we evaluated a humanized anti-GD2 antibody, hu3F8, as a potential delivery vector for targeted radiopharmaceutical imaging of human and canine OS.MethodsThe cross-reactivity of hu3F8 with human and canine OS cells and tumors was examined by immunohistochemistry and flow cytometry. The hu3F8 was radiolabeled with indium-111, and the biodistribution of [111In]In-hu3F8 was assessed in tumor xenograft-bearing mice. The targeting ability of [111In]In-hu3F8 to metastatic OS was tested in spontaneous OS canines.ResultsThe hu3F8 cross reacts with human and canine OS cells and canine OS tumors with high binding affinity. Biodistribution studies revealed selective uptake of [111In]In-hu3F8 in tumor tissue. SPECT/CT imaging of spontaneous OS canines demonstrated avid uptake of [111In]In-hu3F8 in all metastatic lesions. Immunohistochemistry confirmed the extensive binding of radiolabeled hu3F8 within both osseous and soft lesions.ConclusionThis study demonstrates the feasibility of targeting GD2 on OS cells and spontaneous OS canine tumors using hu3F8-based radiopharmaceutical imaging. Its ability to deliver an imaging payload in a targeted manner supports the utility of hu3F8 for precision imaging of OS and potential future use in radiopharmaceutical therapy.
Journal Article
Noninvasive Monitoring of Allogeneic Stem Cell Delivery with Dual-Modality Imaging-Visible Microcapsules in a Rabbit Model of Peripheral Arterial Disease
by
Wacker, Frank
,
Kraitchman, Dara L.
,
Solaiyappan, Meiyappan
in
Animal models
,
Biopolymers
,
Bone marrow
2019
Stem cell therapies, although promising for treating peripheral arterial disease (PAD), often suffer from low engraftment rates and the inability to confirm the delivery success and track cell distribution and engraftment. Stem cell microencapsulation combined with imaging contrast agents may provide a means to simultaneously enhance cell survival and enable cell tracking with noninvasive imaging. Here, we have evaluated a novel MRI- and X-ray-visible microcapsule formulation for allogeneic mesenchymal stem cell (MSC) delivery and tracking in a large animal model. Bone marrow-derived MSCs from male New Zealand White rabbits were encapsulated using a modified cell encapsulation method to incorporate a dual-modality imaging contrast agent, perfluorooctyl bromide (PFOB). PFOB microcapsules (PFOBCaps) were then transplanted into the medial thigh of normal or PAD female rabbits. In vitro MSC viability remained high (79±5% at 4 weeks of postencapsulation), and as few as two and ten PFOBCaps could be detected in phantoms using clinical C-arm CT and 19F MRI, respectively. Successful injections of PFOBCaps in the medial thigh of normal (n=15) and PAD (n=16) rabbits were demonstrated on C-arm CT at 1-14 days of postinjection. Using 19F MRI, transplanted PFOBCaps were clearly identified as “hot spots” and showed one-to-one correspondence to the radiopacities on C-arm CT. Concordance of 19F MRI and C-arm CT locations of PFOBCaps with postmortem locations was high (95%). Immunohistological analysis revealed high MSC survival in PFOBCaps (>56%) two weeks after transplantation while naked MSCs were no longer viable beyond three days after delivery. These findings demonstrate that PFOBCaps could maintain cell viability even in the ischemic tissue and provide a means to monitor cell delivery and track engraftment using clinical noninvasive imaging systems.
Journal Article