Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Krassnig, Stefanie"
Sort by:
The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space
Glioblastoma is characterized by widespread genetic and transcriptional heterogeneity, yet little is known about the role of the epigenome in glioblastoma disease progression. Here, we present genome-scale maps of DNA methylation in matched primary and recurring glioblastoma tumors, using data from a highly annotated clinical cohort that was selected through a national patient registry. We demonstrate the feasibility of DNA methylation mapping in a large set of routinely collected FFPE samples, and we validate bisulfite sequencing as a multipurpose assay that allowed us to infer a range of different genetic, epigenetic, and transcriptional characteristics of the profiled tumor samples. On the basis of these data, we identified subtle differences between primary and recurring tumors, links between DNA methylation and the tumor microenvironment, and an association of epigenetic tumor heterogeneity with patient survival. In summary, this study establishes an open resource for dissecting DNA methylation heterogeneity in a genetically diverse and heterogeneous cancer, and it demonstrates the feasibility of integrating epigenomics, radiology, and digital pathology for a national cohort, thereby leveraging existing samples and data collected as part of routine clinical practice. In-depth methylation analysis of formalin-fixed paraffin-embedded glioblastoma samples demonstrates heterogeneity between primary and recurring tumors and enables prediction of composition of the tumor microenvironment and insights into progression.
Eukaryotic Translation Initiation Factor 4AI: A Potential Novel Target in Neuroblastoma
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor. Children suffering from high-risk and/or metastatic NB often show no response to therapy, and new therapeutic approaches are urgently needed. Malignant tumor development has been shown to be driven by the dysregulation of eukaryotic initiation factors (eIFs) at the translation initiation. Especially the activity of the heterotrimeric eIF4F complex is often altered in malignant cells, since it is the direct connection to key oncogenic signaling pathways such as the PI3K/AKT/mTOR-pathway. A large body of literature exists that demonstrates targeting the translational machinery as a promising anti-neoplastic approach. The objective of this study was to determine whether eIF4F complex members are aberrantly expressed in NB and whether targeting parts of the complex may be a therapeutic strategy against NB. We show that eIF4AI is overexpressed in NB patient tissue using immunohistochemistry, immunoblotting, and RT-qPCR. NB cell lines exhibit decreased viability, increased apoptosis rates as well as changes in cell cycle distribution when treated with the synthetic rocaglate CR-1-31-B, which clamps eIF4A and eIF4F onto mRNA, resulting in a translational block. Additionally, this study reveals that CR-1-31-B is effective against NB cell lines at low nanomolar doses (≤20 nM), which have been shown to not affect non-malignant cells in previous studies. Thus, our study provides information of the expression status on eIF4AI in NB and offers initial promising insight into targeting translation initiation as an anti-tumorigenic approach for NB.
Decreased eukaryotic initiation factors expression upon temozolomide treatment—potential novel implications for eIFs in glioma therapy
Purpose Since glioma therapy is currently still limited until today, new treatment options for this heterogeneous group of tumours are of great interest. Eukaryotic initiation factors (eIFs) are altered in various cancer entities, including gliomas. The purpose of our study was to evaluate the potential of eIFs as novel targets in glioma treatment. Methods We evaluated eIF protein expression and regulation in 22 glioblastoma patient-derived xenografts (GBM PDX) after treatment with established cytostatics and with regards to mutation profile analyses of GBM PDX. Results We observed decreased expression of several eIFs upon temozolomide (TMZ) treatment independent from the phosphatidylinositol 3-kinase (PI3K)/ AKT/ mammalian target of the rapamycin (mTOR) signalling pathway. These effects of TMZ treatment were not present in TMZ-resistant PDX. Combination therapy of regorafenib and TMZ re- established the eIF/AKT/mTOR axis. Conclusion Our study provides novel insights into chemotherapeutic effects on eIF regulation in gliomas and suggests that eIFs are interesting candidates for future research to improve glioma therapy.
A Profound Basic Characterization of eIFs in Gliomas: Identifying eIF3I and 4H as Potential Novel Target Candidates in Glioma Therapy
Glioblastoma (GBM) is an utterly devastating cerebral neoplasm and current therapies only marginally improve patients’ overall survival (OS). The PI3K/AKT/mTOR pathway participates in gliomagenesis through regulation of cell growth and proliferation. Since it is an upstream regulator of the rate-limiting translation initiation step of protein synthesis, controlled by eukaryotic initiation factors (eIFs), we aimed for a profound basic characterization of 17 eIFs to identify potential novel therapeutic targets for gliomas. Therefore, we retrospectively analyzed expressions of mTOR-related proteins and eIFs in human astrocytoma samples (WHO grades I–IV) and compared them to non-neoplastic cortical control brain tissue (CCBT) using immunoblot analyses and immunohistochemistry. We examined mRNA expression using qRT-PCR and additionally performed in silico analyses to observe the influence of eIFs on patients’ survival. Protein and mRNA expressions of eIF3B, eIF3I, eIF4A1, eIF4H, eIF5 and eIF6 were significantly increased in high grade gliomas compared to CCBT and partially in low grade gliomas. However, short OS was only associated with high eIF3I gene expression in low grade gliomas, but not in GBM. In GBM, high eIF4H gene expression significantly correlated with shorter patient survival. In conclusion, we identified eIF3I and eIF4H as the most promising targets for future therapy for glioma patients.
Influence of Lentiviral β-Synuclein Overexpression in the Hippocampus of a Transgenic Mouse Model of Alzheimer's Disease on Amyloid Precursor Protein Metabolism and Pathology
Background: β-Synuclein (β-Syn) is a member of the highly homologous synuclein protein family. The most prominent family member, α-synuclein (α-Syn), abnormally accumulates in so-called Lewy bodies, one of the major pathological hallmarks of α-synucleinopathies. Notably, parts of the peptide backbone, called the nonamyloid component, are also found in amyloid plaques. However, β-Syn seems to have beneficial effects by reducing α-Syn aggregation, and amyloid antiaggregatory activity has been described. Objective: The aim of the study was to analyze if wild-type β-Syn can counteract functional and pathological changes in a murine Alzheimer model over different time periods. Methods: At the onset of pathology, lentiviral particles expressing human β-Syn were injected into the hippocampus of transgenic mice overexpressing human amyloid precursor protein with Swedish and London mutations (APP SL ). An empty vector served as the control. Behavioral analyses were performed 1, 3 and 6 months after injection followed by biochemical and histological examinations of brain samples. Results: β-Syn expression was locally concentrated and rather modest, but nevertheless changed its effect on APP expression and plaque load in a time- and concentration-dependent manner. Interestingly, the phosphorylation of glycogen synthase kinase 3 beta was enhanced in APP SL mice expressing human β-Syn, but an inverse trend was observed in wild-type animals. Conclusion: The initially reported beneficial effects of β-Syn could be partially reproduced, but locally elevated levels of β-Syn might also cause neurodegeneration. To enlighten the controversial pathological mechanism of β-Syn, further examinations considering the relationship between concentration and exposure time of β-Syn are needed.
Influence of Lentiviral beta-Synuclein Overexpression in the Hippocampus of a Transgenic Mouse Model of Alzheimer's Disease on Amyloid Precursor Protein Metabolism and Pathology
Background: [beta]-Synuclein ([beta]-Syn) is a member of the highly homologous synuclein protein family. The most prominent family member, [alpha]-synuclein ([alpha]-Syn), abnormally accumulates in so-called Lewy bodies, one of the major pathological hallmarks of [alpha]-synucleinopathies. Notably, parts of the peptide backbone, called the nonamyloid component, are also found in amyloid plaques. However, [beta]-Syn seems to have beneficial effects by reducing [alpha]-Syn aggregation, and amyloid antiaggregatory activity has been described. Objective: The aim of the study was to analyze if wild-type [beta]-Syn can counteract functional and pathological changes in a murine Alzheimer model over different time periods. Methods: At the onset of pathology, lentiviral particles expressing human [beta]-Syn were injected into the hippocampus of transgenic mice overexpressing human amyloid precursor protein with Swedish and London mutations (APP[sub.SL]). An empty vector served as the control. Behavioral analyses were performed 1, 3 and 6 months after injection followed by biochemical and histological examinations of brain samples. Results: [beta]-Syn expression was locally concentrated and rather modest, but nevertheless changed its effect on APP expression and plaque load in a time- and concentration-dependent manner. Interestingly, the phosphorylation of glycogen synthase kinase 3 beta was enhanced in APP[sub.SL] mice expressing human [beta]-Syn, but an inverse trend was observed in wild-type animals. Conclusion: The initially reported beneficial effects of [beta]-Syn could be partially reproduced, but locally elevated levels of [beta]-Syn might also cause neurodegeneration. To enlighten the controversial pathological mechanism of [beta]-Syn, further examinations considering the relationship between concentration and exposure time of [beta]-Syn are needed. Keywords: β-Synuclein, Alzheimerߣs disease, Amyloid precursor protein, Protein aggregation, AKT signaling, Glycogen synthase kinase 3 beta, Transgenic mice
The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space
Glioblastoma is characterized by widespread genetic and transcriptional heterogeneity, yet little is known about the role of the epigenome in glioblastoma disease progression. Here, we present genome-scale maps of the DNA methylation dynamics in matched primary and recurring glioblastoma tumors, based on a national population registry and a comprehensively annotated clinical cohort. We demonstrate the feasibility of DNA methylation mapping in a large set of routinely collected formalin-fixed paraffin-embedded (FFPE) samples, and we validate bisulfite sequencing as a multi-purpose assay that allowed us to infer a range of different genetic, epigenetic, and transcriptional tumor characteristics. Based on these data, we identified characteristic differences between primary and recurring tumors, links between DNA methylation and the tumor microenvironment, and an association of epigenetic tumor heterogeneity with patient survival. In summary, this study provides a resource for dissecting DNA methylation heterogeneity in genetically diverse and heterogeneous tumors, and it demonstrates the feasibility of integrating epigenomics, radiology, and digital pathology in a representative national cohort, leveraging samples and data collected as part of routine clinical practice.