Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Krekeler, Miriam Celine"
Sort by:
Detrimental proarrhythmogenic interaction of Ca2+/calmodulin-dependent protein kinase II and NaV1.8 in heart failure
An interplay between Ca 2+ /calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na + current (I NaL ) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform Na V 1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of Na V 1.8, we demonstrate that Na V 1.8 contributes to I NaL formation. In addition, we reveal a direct interaction between Na V 1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of Na V 1.8 and CaMKIIδc, we show that Na V 1.8-driven I NaL is CaMKIIδc-dependent and that Na V 1.8-inhibtion reduces diastolic SR-Ca 2+ leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a Na V 1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy. In heart failure, increased CaMKII activity is decisively involved in arrhythmia formation. Here, the authors introduce the neuronal sodium channel Na V 1.8 as a CaMKII downstream target as its specific knock-out reduces arrhythmias and improves survival in a CaMKII-overexpressing mouse model.
Detrimental proarrhythmogenic interaction of Ca 2+ /calmodulin-dependent protein kinase II and Na V 1.8 in heart failure
An interplay between Ca /calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na current (I ) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform Na 1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of Na 1.8, we demonstrate that Na 1.8 contributes to I formation. In addition, we reveal a direct interaction between Na 1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of Na 1.8 and CaMKIIδc, we show that Na 1.8-driven I is CaMKIIδc-dependent and that Na 1.8-inhibtion reduces diastolic SR-Ca leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a Na 1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy.