Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Krishnappa, Gopalareddy"
Sort by:
Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.)
2022
Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS). The GWAS panel was genotyped using Breeders' 35 K Axiom Array and phenotyped in three different environments during 2019–2020. A total of 55 marker-trait associations (MTAs) were identified representing all three sub-genomes of wheat. The highest number of MTAs were identified for GPC (23), followed by TKW (15), TW (11), GFeC (4), and GZnC (2). Further, a stable SNP was identified for TKW, and also pleiotropic regions were identified for GPC and TKW. In silico analysis revealed important putative candidate genes underlying the identified genomic regions such as
F-box-like domain superfamily, Zinc finger CCCH-type proteins, Serine-threonine/tyrosine-protein kinase, Histone deacetylase domain superfamily,
and
SANT/Myb domain superfamily proteins,
etc. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection.
Journal Article
Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.)
by
Ahlawat, Arvind Kumar
,
Jaiswal, Jai Prakash
,
Singh, Gyanendra Pratap
in
Accumulation
,
Analysis
,
Biology and Life Sciences
2017
Genomic regions responsible for accumulation of grain iron concentration (Fe), grain zinc concentration (Zn), grain protein content (PC) and thousand kernel weight (TKW) were investigated in 286 recombinant inbred lines (RILs) derived from a cross between an old Indian wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops squarrosa [409]//BCN). RILs were grown in six environments and evaluated for Fe, Zn, PC, and TKW. The population showed the continuous distribution for all the four traits, that for pooled Fe and PC was near normal, whereas, for pooled Zn, RILs exhibited positively skewed distribution. A genetic map spanning 2155.3cM was constructed using microsatellite markers covering the 21 chromosomes and used for QTL analysis. 16 quantitative trait loci (QTL) were identified in this study. Four QTLs (QGFe.iari-2A, QGFe.iari-5A, QGFe.iari-7A and QGFe.iari-7B) for Fe, five QTLs (QGZn.iari-2A, QGZn.iari-4A, QGZn.iari-5A, QGZn.iari-7A and QGZn.iari-7B) for Zn, two QTLs (QGpc.iari-2A and QGpc.iari-3A) for PC, and five QTLs (QTkw.iari-1A, QTkw.iari-2A, QTkw.iari-2B, QTkw.iari-5B and QTkw.iari-7A) for TKW were identified. The QTLs together explained 20.0%, 32.0%, 24.1% and 32.3% phenotypic variation, respectively, for Fe, Zn, PC and TKW. QGpc.iari-2A was consistently expressed in all the six environments, whereas, QGFe.iari-7B and QGZn.iari-2A were identified in two environments each apart from pooled mean. QTkw.iari-2A and QTkw.iari-7A, respectively, were identified in four and three environments apart from pooled mean. A common region in the interval of Xgwm359-Xwmc407 on chromosome 2A was associated with Fe, Zn, and PC. One more QTL for TKW was identified on chromosome 2A but in a different chromosomal region (Xgwm382-Xgwm359). Two more regions on 5A (Xgwm126-Xgwm595) and 7A (Xbarc49-Xwmc525) were found to be associated with both Fe and Zn. A QTL for TKW was identified (Xwmc525-Xbarc222) in a different chromosomal region on the same chromosome (7A). This reflects at least a partly common genetic basis for the four traits. It is concluded that fine mapping of the regions of the three chromosomes of A genome involved in determining the accumulation of Fe, Zn, PC, and TKW in this mapping population may be rewarding.
Journal Article
High resolution mapping of agro-morphological and grain traits in bread wheat using SNP-based QTL analysis
by
Jadon, Vasudha
,
Krishna, Hari
,
Singh, Gyanendra Pratap
in
Analysis
,
Botany
,
Chromosome Mapping - methods
2026
Wheat ( Triticum aestivum L.) is among the most extensively grown staple crops worldwide. A set of 188 recombinant inbred lines (RILs) derived from a cross between HD2932 and Synthetic 46 was evaluated over three consecutive years (2021–22, 2022–23, and 2023–24) for plant height (PH), spike length (SL), spikelets per spike (SPS), thousand kernel weight (TKW), kernel length (KL), kernel width (KW), and kernel thickness (KT). The population displayed wide phenotypic variability with quantitative inheritance for all the traits. High-density genotyping was performed using 910 SSR markers and a 35K SNP array. Twenty-eight QTLs, including six for PH, two for SL, three for SPS, two for TKW, five for KL, six for KW, and four for KT distributed across 16 chromosomes were identified. QTkw.iari_4B , flanked by Xgwm149–AX-94559916 , was detected in all three environments (Q × E not formally tested) consistently and co-localized with QTLs for PH, KL, and KT, indicating a potentially important genomic region for yield improvement. Promising lines such as RIL 122 and RIL 66 exhibited superior kernel characteristics, while RIL 155 showed lower expression values. In silico analysis identified 28 candidate genes within these QTL regions, offering insights into trait regulation. These findings may serve as potential resources for marker-assisted selection in wheat breeding programs to enhance yield and grain quality parameters.
Journal Article
Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study
2022
Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e.
AX-95025823
was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as
Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily,
and
C3H4 type zinc finger protein,
involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.
Journal Article
Genome-wide association study identifies novel loci and candidate genes for rust resistance in wheat (Triticum aestivum L.)
by
Khan, Hanif
,
Mishra, Chandra Nath
,
Rathan, Nagenahalli Dharmegowda
in
Agricultural production
,
Agricultural research
,
Agriculture
2024
Background
Wheat rusts are important biotic stresses, development of rust resistant cultivars through molecular approaches is both economical and sustainable. Extensive phenotyping of large mapping populations under diverse production conditions and high-density genotyping would be the ideal strategy to identify major genomic regions for rust resistance in wheat. The genome-wide association study (GWAS) population of 280 genotypes was genotyped using a 35 K Axiom single nucleotide polymorphism (SNP) array and phenotyped at eight, 10, and, 10 environments, respectively for stem/black rust (SR), stripe/yellow rust (YR), and leaf/brown rust (LR).
Results
Forty-one Bonferroni corrected marker-trait associations (MTAs) were identified, including 17 for SR and 24 for YR. Ten stable MTAs and their best combinations were also identified. For YR,
AX-94990952
on 1A +
AX-95203560
on 4A +
AX-94723806
on 3D +
AX-95172478
on 1A showed the best combination with an average co-efficient of infection (ACI) score of 1.36. Similarly, for SR,
AX-94883961
on 7B +
AX-94843704
on 1B and
AX-94883961
on 7B +
AX-94580041
on 3D +
AX-94843704
on 1B showed the best combination with an ACI score of around 9.0. The genotype PBW827 have the best MTA combinations for both YR and SR resistance. In silico study identifies key prospective candidate genes that are located within MTA regions. Further, the expression analysis revealed that 18 transcripts were upregulated to the tune of more than 1.5 folds including 19.36 folds (TraesCS3D02G519600) and 7.23 folds (TraesCS2D02G038900) under stress conditions compared to the control conditions. Furthermore, highly expressed genes in silico under stress conditions were analyzed to find out the potential links to the rust phenotype, and all four genes were found to be associated with the rust phenotype.
Conclusion
The identified novel MTAs, particularly stable and highly expressed MTAs are valuable for further validation and subsequent application in wheat rust resistance breeding. The genotypes with favorable MTA combinations can be used as prospective donors to develop elite cultivars with YR and SR resistance.
Journal Article
Genetic dissection of Septoria tritici blotch and Septoria nodorum blotch resistance in wheat using GWAS
by
Kokhmetova, Asia
,
Bakhytuly, Kanat
,
Sehgal, Deepmala
in
Binding sites
,
candidate genes
,
Cloning
2025
Septoria blotch is a globally significant disease, which ranks second in importance after wheat rusts that causes substantial yield losses. The development of Septoria blotch resistant cultivars through molecular approaches is both economical and sustainable strategy to contain the disease.
For identifying genomic regions associated with resistance to Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB) in wheat, a genome-wide association study (GWAS) was conducted using a diverse panel of 191 spring and winter wheat genotypes. The panel was genotyped using DArTseq™ technology and phenotyped under natural field conditions for three cropping seasons (2019-2020, 2020-2021, and 2021-2022) and under artificially inoculated field conditions for two cropping seasons (2020-2021 and 2021-2022). Additionally, the panel was phenotyped under greenhouse conditions for STB (five mixed isolates in a single experiment) and SNB (four independent isolates and a purified toxin in five different independent experiments).
GWAS identified nine marker-trait associations (MTAs), including six MTAs for different isolates under greenhouse conditions, two MTAs under natural field conditions, and one MTA under artificially inoculated field conditions. A pleiotropic MTA (100023665) was identified on chromosome 5B governing resistance against SNB isolate Pn Sn2K_USA and SNB purified toxin Pn ToxA_USA and explaining 30.73% and 46.94% of phenotypic variation, respectively.
analysis identified important candidate genes belonging to the leucine-rich repeat (LRR) domain superfamily, zinc finger GRF-type transcription factors, potassium transporters, nucleotide-binding site (NBS) domain superfamily, disease resistance protein, P-loop containing nucleoside triphosphate hydrolase, virus X resistance protein, and NB-ARC domains. The stable and major MTAs associated with disease resistant putative candidate genes are valuable for further validation and subsequent application in wheat septoria blotch resistance breeding.
Journal Article
Integrated Approach in Genomic Selection to Accelerate Genetic Gain in Sugarcane
by
Singh, Jyotsnendra
,
Meena, Mintu Ram
,
Raja, Arun Kumar
in
Abiotic stress
,
Agricultural production
,
Animal breeding
2022
Marker-assisted selection (MAS) has been widely used in the last few decades in plant breeding programs for the mapping and introgression of genes for economically important traits, which has enabled the development of a number of superior cultivars in different crops. In sugarcane, which is the most important source for sugar and bioethanol, marker development work was initiated long ago; however, marker-assisted breeding in sugarcane has been lagging, mainly due to its large complex genome, high levels of polyploidy and heterozygosity, varied number of chromosomes, and use of low/medium-density markers. Genomic selection (GS) is a proven technology in animal breeding and has recently been incorporated in plant breeding programs. GS is a potential tool for the rapid selection of superior genotypes and accelerating breeding cycle. However, its full potential could be realized by an integrated approach combining high-throughput phenotyping, genotyping, machine learning, and speed breeding with genomic selection. For better understanding of GS integration, we comprehensively discuss the concept of genetic gain through the breeder’s equation, GS methodology, prediction models, current status of GS in sugarcane, challenges of prediction accuracy, challenges of GS in sugarcane, integrated GS, high-throughput phenotyping (HTP), high-throughput genotyping (HTG), machine learning, and speed breeding followed by its prospective applications in sugarcane improvement.
Journal Article
Mapping QTL for Phenological and Grain-Related Traits in a Mapping Population Derived from High-Zinc-Biofortified Wheat
by
Singh, Anju-Mahendru
,
Rathan, Nagenahalli Dharmegowda
,
Krishnappa, Gopalareddy
in
abiotic stress
,
Adaptation
,
Agricultural production
2023
Genomic regions governing days to heading (DH), days to maturity (DM), plant height (PH), thousand-kernel weight (TKW), and test weight (TW) were investigated in a set of 190 RILs derived from a cross between a widely cultivated wheat-variety, Kachu (DPW-621-50), and a high-zinc variety, Zinc-Shakti. The RIL population was genotyped using 909 DArTseq markers and phenotyped in three environments. The constructed genetic map had a total genetic length of 4665 cM, with an average marker density of 5.13 cM. A total of thirty-seven novel quantitative trait loci (QTL), including twelve for PH, six for DH, five for DM, eight for TKW and six for TW were identified. A set of 20 stable QTLs associated with the expression of DH, DM, PH, TKW, and TW were identified in two or more environments. Three novel pleiotropic genomic-regions harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the DArTseq markers were located on important putative candidate genes such as MLO-like protein, Phytochrome, Zinc finger and RING-type, Cytochrome P450 and pentatricopeptide repeat, involved in the regulation of pollen maturity, the photoperiodic modulation of flowering-time, abiotic-stress tolerance, grain-filling duration, thousand-kernel weight, seed morphology, and plant growth and development. The identified novel QTLs, particularly stable and co-localized QTLs, will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS).
Journal Article
Harnessing High Yield Potential in Wheat (Triticum aestivum L.) under Climate Change Scenario
by
Chatrath, Ravish
,
Tyagi, Bhudeva Singh
,
Khan, Hanif
in
Adaptation
,
Agricultural practices
,
Agricultural production
2023
Wheat is a major staple food crop for food security in India and South Asia. The current rate (0.8–1.2%) of genetic gain in wheat is significantly shorter than the 2.4% needed to meet future demand. The changing climate and increased yield loss due to factors such as terminal heat stress necessitate the need for climate-resilient practices to sustain wheat production. At ICAR-Indian Institute of Wheat and Barley Research in Karnal, Haryana, India, a new High Yield Potential Trial (HYPT) was conceptualized and subsequently conducted at six locations in the highly productive North Western Plain Zone (NWPZ). An attempt was made to harness higher wheat yields through the best pipeline genotypes suitable for early sowing and modified agronomic practices to explore the feasibility of a new approach that is profitable to farmers. The modified agronomic practices included like early sowing, application of 150% recommended dose of fertilizers, and two sprays of growth regulators (Chlormaquate chloride and Tebuconazole) to prevent lodging. The mean yield in the HYPT was 19.4% superior compared to the best trials conducted during the normal sowing time. A highly positive and significant correlation of grain yield with grain filling duration (0.51), biomass (0.73), harvest index (0.75), normalized difference vegetation Index (0.27), chlorophyll content index (0.32), and 1000-grain weight (0.62) was observed. An increased return of USD 201.95/ha was realized in the HYPT when compared to normal sowing conditions. This study proves that new integrated practices have the potential to provide the best profitable yields in wheat in the context of climate change.
Journal Article
Deciphering Winter Sprouting Potential of Erianthus procerus Derived Sugarcane Hybrids under Subtropical Climates
by
Hemaprabha, Govind
,
Govindaraj, Perumal
,
Swamy, H. K. Mahadeva
in
Abiotic stress
,
Agricultural production
,
Anthocyanins
2024
Winter sprouting potential and red rot resistance are two key parameters for successful sugarcane breeding in the subtropics. However, the cultivated sugarcane hybrids had a narrow genetic base; hence, the present study was planned to evaluate the Erianthus procerus genome introgressed Saccharum hybrids for their ratooning potential under subtropical climates and red rot tolerance under tropical and subtropical climates. A set of 15 Erianthus procerus derived hybrids confirmed through the 5S rDNA marker, along with five check varieties, were evaluated for agro-morphological, quality, and physiological traits for two years (2018–2019 and 2019–2020) and winter sprouting potential for three years (2018–2019, 2019–2020, and 2020–2021). The experimental material was also tested against the most prevalent isolates of the red rot pathogen in tropical (Cf671 and Cf671 + Cf9401) and subtropical regions (Cf08 and Cf09). The E. procerus hybrid GU 12—19 had the highest winter sprouting potential, with a winter sprouting index (WSI) of 10.6, followed by GU 12—22 with a WSI of 8.5. The other top-performing hybrids were as follows: GU 12—21 and GU 12—29 with a WSI of 7.2 and 6.9, respectively. A set of nine E. procerus-derived hybrids, i.e., GU04 (28) EO—2, GU12—19, GU12—21, GU12—22, GU12—23, GU12—26, GU12—27, GU12—30, and GU12—31, were resistant to the most prevalent isolates of red rot in both tropical and subtropical conditions. The association analysis revealed significant correlations between the various traits, particularly the fibre content, with a maximum number of associations, which indicates its multifaceted impact on sugarcane characteristics. Principal component analysis (PCA) summarised the data, explaining 57.6% of the total variation for the measured traits and genotypes, providing valuable insights into the performance and characteristics of the Erianthus procerus derived hybrids under subtropical climates. The anthocyanin content of Erianthus procerus hybrids was better than the check varieties, ranging from 0.123 to 0.179 (2018–2019) and 0.111 to 0.172 (2019–2020); anthocyanin plays a vital role in mitigating cold injury, acting as an antioxidant in cool weather conditions, particularly in sugarcane. Seven hybrids recorded a more than 22% fibre threshold, indicating their industrial potential. These hybrids could serve as potential donors for cold tolerance and a high ratooning ability, along with red rot resistance, under subtropical climates.
Journal Article