Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
66
result(s) for
"Kroll, Jens"
Sort by:
Acrolein-inducing ferroptosis contributes to impaired peripheral neurogenesis in zebrafish
2023
Diabetes mellitus (DM) is associated with physiological disorders such as delayed wound healing, diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy (DPN). Over 50% of diabetic patients will develop DPN, characterized by motor dysfunction and impaired sensory nerve function. In a previous study, we have uncovered acrolein (ACR) as an upstream initiator which induced impaired glucose homeostasis and microvascular alterations in zebrafish. Whether ACR has specific effects on peripheral neurogenesis and mediates DPN, is still waiting for clarification.
To evaluate the function of ACR in peripheral nerve development,
experiments were performed in
zebrafish. In addition, a series of rescue experiments, metabolomics assessment, and bioinformatics analysis was performed aimed at identifying the molecular mechanisms behind ACR's function and impaired neurogenesis.
Impaired motor neuron development was confirmed in wild-type embryos treated with external ACR. ACR treated embryos displayed ferroptosis and reduction of several amino acids and increased glutathione (GSH). Furthermore, ferroptosis inducer caused similarly suppressed neurogenesis in zebrafish embryos, while anti-ACR treatment or ferroptosis inhibitor could successfully reverse the detrimental phenotypes of ACR on neurogenesis in zebrafish.
Our data indicate that ACR could directly activate ferroptosis and impairs peripheral neurogenesis. The data strongly suggest ACR and activated ferroptosis as inducers and promising therapeutic targets for future DPN studies.
Journal Article
Increased circulating uric acid aggravates heart failure via impaired fatty acid metabolism
2023
Background
Increased circulating uric acid (UA) concentration may disrupt cardiac function in heart failure patients, but the specific mechanism remains unclear. Here, we postulate that hyperuremia induces sterol regulatory element binding protein 1 (SREBP1), which in turn activate hepatic fatty acid biosynthesis response, leading to cardiac dysfunction.
Methods and results
Increased circulating uric acid was observed in heart failure patients and inversely correlated to cardiac function. Besides, uric acid correlated to circulating lipids profile based on metabolomics in heart failure patients. Using cultured human hepatoellular carcinomas (HepG2) and Tg(myl7:egfp) zebrafish, we demonstrated that UA regulated fatty acid synthase (FASN) via SREBP1 signaling pathway, leading to FFA accumulation and impaired energy metabolism, which could be rescued via SREBP1 knockdown. In ISO treated zebrafish, UA aggravated heart failure via increased cardiovascular cavity size, decreased heart beats, pericardial edema and long-stretched heart deformation.
Conclusions
Our findings suggest that UA-SREBP1-FASN signaling exacerbates cardiac dysfunction during FFA accumulation. Identification of this mechanism may help in treatment and prevention of heart failure.
Journal Article
Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin
2011
Histone deacetylases (HDACs) deacetylate histones and non‐histone proteins, thereby affecting protein activity and gene expression. The regulation and function of the cytoplasmic class IIb HDAC6 in endothelial cells (ECs) is largely unexplored. Here, we demonstrate that HDAC6 is upregulated by hypoxia and is essential for angiogenesis. Silencing of HDAC6 in ECs decreases sprouting and migration
in vitro
and formation of functional vascular networks in matrigel plugs
in vivo
. HDAC6 regulates zebrafish vessel formation, and HDAC6‐deficient mice showed a reduced formation of perfused vessels in matrigel plugs. Consistently, overexpression of wild‐type HDAC6 increases sprouting from spheroids. HDAC6 function requires the catalytic activity but is independent of ubiquitin binding and deacetylation of α‐tubulin. Instead, we found that HDAC6 interacts with and deacetylates the actin‐remodelling protein cortactin in ECs, which is essential for zebrafish vessel formation and which mediates the angiogenic effect of HDAC6. In summary, we show that HDAC6 is necessary for angiogenesis
in vivo
and
in vitro
, involving the interaction and deacetylation of cortactin that regulates EC migration and sprouting.
The histone deacetylase HDAC6 is essential for endothelial cell sprouting and migration, and hence the formation of functional vascular networks in zebrafish and mouse. HDAC6 regulates angiogenesis through deacetylation of the actin‐remodelling protein cortactin.
Journal Article
Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells
2018
Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a causal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipoproteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2-controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.
During atherosclerosis, endothelial cells release purines in response to oxidized phospholipids. Here, Hitzel et al. show that oxidized phospholipids activate an MTHFD2-regulated gene network in endothelial cells which reprograms amino acid metabolism towards production of purines and thus compensates for their loss.
Journal Article
Correction: Different Regulation of Physiological and Tumor Angiogenesis in Zebrafish by Protein Kinase D1 (PKD1)
by
Kroll, Jens
,
Seufferlein, Thomas
,
Hollenbach, Marcus
in
Genes
,
Physiological aspects
,
Protein kinases
2020
[This corrects the article DOI: 10.1371/journal.pone.0068033.].
Journal Article
Advancing Diabetic Retinopathy Research: Analysis of the Neurovascular Unit in Zebrafish
by
Kroll, Jens
,
Hammes, Hans-Peter
,
Middel, Chiara Simone
in
Angiogenesis
,
Animal models
,
Blindness
2021
Diabetic retinopathy is one of the most important microvascular complications associated with diabetes mellitus, and a leading cause of vision loss or blindness worldwide. Hyperglycaemic conditions disrupt microvascular integrity at the level of the neurovascular unit. In recent years, zebrafish (Danio rerio) have come into focus as a model organism for various metabolic diseases such as diabetes. In both mammals and vertebrates, the anatomy and the function of the retina and the neurovascular unit have been highly conserved. In this review, we focus on the advances that have been made through studying pathologies associated with retinopathy in zebrafish models of diabetes. We discuss the different cell types that form the neurovascular unit, their role in diabetic retinopathy and how to study them in zebrafish. We then present new insights gained through zebrafish studies. The advantages of using zebrafish for diabetic retinopathy are summarised, including the fact that the zebrafish has, so far, provided the only animal model in which hyperglycaemia-induced retinal angiogenesis can be observed. Based on currently available data, we propose potential investigations that could advance the field further.
Journal Article
Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes
2022
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), also known as Rhodanese, was initially discovered as a cyanide detoxification enzyme. However, it was recently also found to be a genetic predictor of resistance to obesity-related type 2 diabetes. Diabetes type 2 is characterized by progressive loss of adequate β-cell insulin secretion and onset of insulin resistance with increased insulin demand, which contributes to the development of hyperglycemia. Diabetic complications have been replicated in adult hyperglycemic zebrafish, including retinopathy, nephropathy, impaired wound healing, metabolic memory, and sensory axonal degeneration. Pancreatic and duodenal homeobox 1 (Pdx1) is a key component in pancreas development and mature beta cell function and survival.
Pdx1
knockdown or knockout in zebrafish induces hyperglycemia and is accompanied by organ alterations similar to clinical diabetic retinopathy and diabetic nephropathy. Here we show that
pdx1
-knockdown zebrafish embryos and larvae survived after incubation with thiosulfate and no obvious morphological alterations were observed. Importantly, incubation with hTST and thiosulfate rescued the hyperglycemic phenotype in
pdx1
-knockdown zebrafish pronephros. Activation of the mitochondrial TST pathway might be a promising option for therapeutic intervention in diabetes and its organ complications.
Journal Article
Analysis of the morphology of retinal vascular cells in zebrafish (Danio rerio)
by
Chiara Simone Middel
,
Jens Kroll
,
Nadine Dietrich
in
Biology (General)
,
Cell and Developmental Biology
,
Cell culture
2023
Background:
Zebrafish (
Danio rerio
) have been established in recent years as a model organism to study Diabetic Retinopathy (DR). Loss of endothelial cells and pericytes is an early hallmark sign of developing DR in the mammalian retina. However, morphology, numbers, ratios, and distributions of different vascular cells in the retinal compartment in zebrafish have not yet been analyzed and compared with the mammalian retina.
Methods:
The retinal trypsin digest protocol was established on the zebrafish retina. Cell types were identified using the
Tg(nflk:EGFP)-
reporter line. Cells were quantified using quantitative morphometry.
Results:
Vascular cells in the zebrafish retina have distinct morphologies and locations. Nuclei of vascular mural cells appear as long and flat nuclei located near the vessel wall. Round nuclei within the vessel walls can be identified as endothelial cells. The vessel diameter decreases from central to peripheral parts of the retina. Additionally, the numbers of vascular cells decrease from central to peripheral parts of the retina.
Discussion:
The retinal trypsin digest protocol, which can be applied to the zebrafish retina, provides novel insights into the zebrafish retinal vascular architecture. Quantification of the different cell types shows that, in comparison to the mammalian retina, zebrafish have higher numbers of mural cells and an increased mural cell to endothelial cell ratio. This protocol enables to quantify mural cell and endothelial cell numbers, is easily adaptable to different transgenic and mutant zebrafish lines and will enable investigators to compare novel models on a single cell level.
Journal Article
ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions
2016
Engulfment and cell motility 1 (ELMO1) functions as a guanine exchange factor for Rac1 and was recently found to protect endothelial cells from apoptosis. Genome wide association studies suggest that polymorphisms within human
elmo1
act as a potential contributing factor for the development of diabetic nephropathy. Yet, the function of ELMO1 with respect to the glomerulus and how this protein contributes to renal pathology was unknown. Thus, this study aimed to identify the role played by ELMO1 in renal development in zebrafish, under hyperglycaemic conditions, and in diabetic nephropathy patients. In zebrafish, hyperglycaemia did not alter renal ELMO1 expression. However, hyperglycaemia leads to pathophysiological and functional alterations within the pronephros, which could be rescued via ELMO1 overexpression. Zebrafish ELMO1 crispants exhibited a renal pathophysiology due to increased apoptosis which could be rescued by the inhibition of apoptosis. In human samples, immunohistochemical staining of ELMO1 in nondiabetic, diabetic and polycystic kidneys localized ELMO1 in glomerular podocytes and in the tubules. However, ELMO1 was not specifically or distinctly regulated under either one of the disease conditions. Collectively, these results highlight ELMO1 as an important factor for glomerular protection and renal cell survival via decreasing apoptosis, especially under diabetic conditions.
Journal Article
Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms
2017
Diabetes mellitus (DM) is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today’s medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.
Journal Article