Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
110 result(s) for "Kuipers, Jack"
Sort by:
Joint inference of exclusivity patterns and recurrent trajectories from tumor mutation trees
Cancer progression is an evolutionary process shaped by both deterministic and stochastic forces. Multi-region and single-cell sequencing of tumors enable high-resolution reconstruction of the mutational history of each tumor and highlight the extensive diversity across tumors and patients. Resolving the interactions among mutations and recovering recurrent evolutionary processes may offer greater opportunities for successful therapeutic strategies. To this end, we present a novel probabilistic framework, called TreeMHN, for the joint inference of exclusivity patterns and recurrent trajectories from a cohort of intra-tumor phylogenetic trees. Through simulations, we show that TreeMHN outperforms existing alternatives that can only focus on one aspect of the task. By analyzing datasets of blood, lung, and breast cancers, we find the most likely evolutionary trajectories and mutational patterns, consistent with and enriching our current understanding of tumorigenesis. Moreover, TreeMHN facilitates the prediction of tumor evolution and provides probabilistic measures on the next mutational events given a tumor tree, a prerequisite for evolution-guided treatment strategies. Understanding cancer evolution is crucial for developing effective therapies. Here, authors present TreeMHN, a probabilistic model for inferring exclusivity patterns of genomic events and evolutionary trajectories from intra-tumor phylogenetic trees.
Single-cell mutation identification via phylogenetic inference
Reconstructing the evolution of tumors is a key aspect towards the identification of appropriate cancer therapies. The task is challenging because tumors evolve as heterogeneous cell populations. Single-cell sequencing holds the promise of resolving the heterogeneity of tumors; however, it has its own challenges including elevated error rates, allelic drop-out, and uneven coverage. Here, we develop a new approach to mutation detection in individual tumor cells by leveraging the evolutionary relationship among cells. Our method, called SCIΦ, jointly calls mutations in individual cells and estimates the tumor phylogeny among these cells. Employing a Markov Chain Monte Carlo scheme enables us to reliably call mutations in each single cell even in experiments with high drop-out rates and missing data. We show that SCIΦ outperforms existing methods on simulated data and applied it to different real-world datasets, namely a whole exome breast cancer as well as a panel acute lymphoblastic leukemia dataset. Cross-cell heterogeneity of genotypes can be revealed by analyzing single-cell sequencing data. Here the authors develop a tool for single-cell variant calling via phylogenetic inference, and use it to analyze cancer genomics datasets.
Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data
Understanding the clonal architecture and evolutionary history of a tumour poses one of the key challenges to overcome treatment failure due to resistant cell populations. Previously, studies on subclonal tumour evolution have been primarily based on bulk sequencing and in some recent cases on single-cell sequencing data. Either data type alone has shortcomings with regard to this task, but methods integrating both data types have been lacking. Here, we present B-SCITE, the first computational approach that infers tumour phylogenies from combined single-cell and bulk sequencing data. Using a comprehensive set of simulated data, we show that B-SCITE systematically outperforms existing methods with respect to tree reconstruction accuracy and subclone identification. B-SCITE provides high-fidelity reconstructions even with a modest number of single cells and in cases where bulk allele frequencies are affected by copy number changes. On real tumour data, B-SCITE generated mutation histories show high concordance with expert generated trees. Intra-tumour heterogeneity provides important information about subclonal tumour evolution. Here, the authors develop B-SCITE, a computational method for inferring tumour phylogenies from combined single-cell and bulk sequencing data.
COMPASS: joint copy number and mutation phylogeny reconstruction from amplicon single-cell sequencing data
Reconstructing the history of somatic DNA alterations can help understand the evolution of a tumor and predict its resistance to treatment. Single-cell DNA sequencing (scDNAseq) can be used to investigate clonal heterogeneity and to inform phylogeny reconstruction. However, most existing phylogenetic methods for scDNAseq data are designed either for single nucleotide variants (SNVs) or for large copy number alterations (CNAs), or are not applicable to targeted sequencing. Here, we develop COMPASS, a computational method for inferring the joint phylogeny of SNVs and CNAs from targeted scDNAseq data. We evaluate COMPASS on simulated data and apply it to several datasets including a cohort of 123 patients with acute myeloid leukemia. COMPASS detected clonal CNAs that could be orthogonally validated with bulk data, in addition to subclonal ones that require single-cell resolution, some of which point toward convergent evolution. Understanding the evolution of a tumor is important for predicting its resistance to treatment. This paper presents a new computational method, COMPASS, for inferring the joint phylogeny of single nucleotide variants and copy number alterations from targeted scDNAseq data.
Sexual abuse and psychotic phenomena: a directed acyclic graph analysis of affective symptoms using English national psychiatric survey data
Sexual abuse and bullying are associated with poor mental health in adulthood. We previously established a clear relationship between bullying and symptoms of psychosis. Similarly, we would expect sexual abuse to be linked to the emergence of psychotic symptoms, through effects on negative affect. We analysed English data from the Adult Psychiatric Morbidity Surveys, carried out in 2007 ( = 5954) and 2014 ( = 5946), based on representative national samples living in private households. We used probabilistic graphical models represented by directed acyclic graphs (DAGs). We obtained measures of persecutory ideation and auditory hallucinosis from the Psychosis Screening Questionnaire, and identified affective symptoms using the Clinical Interview Schedule. We included cannabis consumption and sex as they may determine the relationship between symptoms. We constrained incoming edges to sexual abuse and bullying to respect temporality. In the DAG analyses, contrary to our expectations, paranoia appeared early in the cascade of relationships, close to the abuse variables, and generally lying upstream of affective symptoms. Paranoia was consistently directly antecedent to hallucinations, but also indirectly so, via non-psychotic symptoms. Hallucinosis was also the endpoint of pathways involving non-psychotic symptoms. Via worry, sexual abuse and bullying appear to drive a range of affective symptoms, and in some people, these may encourage the emergence of hallucinations. The link between adverse experiences and paranoia is much more direct. These findings have implications for managing distressing outcomes. In particular, worry may be a salient target for intervention in psychosis.
Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics
Clonal diversity is a consequence of cancer cell evolution driven by Darwinian selection. Precise characterization of clonal architecture is essential to understand the evolutionary history of tumor development and its association with treatment resistance. Here, using a single-cell DNA sequencing, we report the clonal architecture and mutational histories of 123 acute myeloid leukemia (AML) patients. The single-cell data reveals cell-level mutation co-occurrence and enables reconstruction of mutational histories characterized by linear and branching patterns of clonal evolution, with the latter including convergent evolution. Through xenotransplantion, we show leukemia initiating capabilities of individual subclones evolving in parallel. Also, by simultaneous single-cell DNA and cell surface protein analysis, we illustrate both genetic and phenotypic evolution in AML. Lastly, single-cell analysis of longitudinal samples reveals underlying evolutionary process of therapeutic resistance. Together, these data unravel clonal diversity and evolution patterns of AML, and highlight their clinical relevance in the era of precision medicine. Understanding the evolutionary trajectory of cancer samples may enable understanding resistance to treatment. Here, the authors used single cell sequencing of a cohort of acute myeloid leukemia tumours and identify features of linear and branching evolution in tumours.
Network-based clustering unveils interconnected landscapes of genomic and clinical features across myeloid malignancies
Myeloid malignancies exhibit considerable heterogeneity with overlapping clinical and genetic features among subtypes. We present a data-driven approach that integrates mutational features and clinical covariates at diagnosis within networks of their probabilistic relationships, enabling the discovery of patient subgroups. A key strength is its ability to include presumed causal directions in the edges linking clinical and mutational features, and account for them aptly in the clustering. In a cohort of 1323 patients, we identify subgroups that outperform established risk classifications in prognostic accuracy. Our approach generalises well to unseen cohorts with classification based on our subgroups similarly offering advantages in predicting prognosis. Our findings suggest that mutational patterns are often shared across myeloid malignancies, with distinct subtypes potentially representing evolutionary stages en route to leukemia. With pancancer TCGA data, we observe that our modelling framework extends naturally to other cancer types while still offering improvements in subgroup discovery. Myeloid malignancies vary significantly in their clinical outcomes and their genetic background. Here, the authors develop a network-based clustering method to predict subgroups of malignancies across disease subtypes.
DelSIEVE: cell phylogeny modeling of single nucleotide variants and deletions from single-cell DNA sequencing data
With rapid advancements in single-cell DNA sequencing (scDNA-seq), various computational methods have been developed to study evolution and call variants on single-cell level. However, modeling deletions remains challenging because they affect total coverage in ways that are difficult to distinguish from technical artifacts. We present DelSIEVE, a statistical method that infers cell phylogeny and single-nucleotide variants, accounting for deletions, from scDNA-seq data. DelSIEVE distinguishes deletions from mutations and artifacts, detecting more evolutionary events than previous methods. Simulations show high performance, and application to cancer samples reveals varying amounts of deletions and double mutants in different tumors.
Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model
Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments.
Predicting colorectal cancer risk from adenoma detection via a two-type branching process model
Despite advances in the modeling and understanding of colorectal cancer development, the dynamics of the progression from benign adenomatous polyp to colorectal carcinoma are still not fully resolved. To take advantage of adenoma size and prevalence data in the National Endoscopic Database of the Clinical Outcomes Research Initiative (CORI) as well as colorectal cancer incidence and size data from the Surveillance Epidemiology and End Results (SEER) database, we construct a two-type branching process model with compartments representing adenoma and carcinoma cells. To perform parameter inference we present a new large-size approximation to the size distribution of the cancer compartment and validate our approach on simulated data. By fitting the model to the CORI and SEER data, we learn biologically relevant parameters, including the transition rate from adenoma to cancer. The inferred parameters allow us to predict the individualized risk of the presence of cancer cells for each screened patient. We provide a web application which allows the user to calculate these individual probabilities at https://ccrc-eth.shinyapps.io/CCRC/. For example, we find a 1 in 100 chance of cancer given the presence of an adenoma between 10 and 20mm size in an average risk patient at age 50. We show that our two-type branching process model recapitulates the early growth dynamics of colon adenomas and cancers and can recover epidemiological trends such as adenoma prevalence and cancer incidence while remaining mathematically and computationally tractable.