Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Kulkarni, Gourihar R"
Sort by:
Southern Ocean latitudinal gradients of cloud condensation nuclei
The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. While remoteness from anthropogenic and continental sources is responsible for its clean atmosphere, this also results in the dearth of atmospheric observations in the region. Here we present a statistical summary of the latitudinal gradient of aerosol (condensation nuclei larger than 10 nm, CN10) and cloud condensation nuclei (CCN at various supersaturations) concentrations obtained from five voyages spanning the Southern Ocean between Australia and Antarctica from late spring to early autumn (October to March) of the 2017/18 austral seasons. Three main regions of influence were identified: the northern sector (40–45∘ S), where continental and anthropogenic sources coexisted with background marine aerosol populations; the mid-latitude sector (45–65∘ S), where the aerosol populations reflected a mixture of biogenic and sea-salt aerosol; and the southern sector (65–70∘ S), south of the atmospheric polar front, where sea-salt aerosol concentrations were greatly reduced and aerosol populations were primarily biologically derived sulfur species with a significant history in the Antarctic free troposphere. The northern sector showed the highest number concentrations with median (25th to 75th percentiles) CN10 and CCN0.5 concentrations of 681 (388–839) cm−3 and 322 (105–443) cm−3, respectively. Concentrations in the mid-latitudes were typically around 350 cm−3 and 160 cm−3 for CN10 and CCN0.5, respectively. In the southern sector, concentrations rose markedly, reaching 447 (298–446) cm−3 and 232 (186–271) cm−3 for CN10 and CCN0.5, respectively. The aerosol composition in this sector was marked by a distinct drop in sea salt and increase in both sulfate fraction and absolute concentrations, resulting in a substantially higher CCN0.5/CN10 activation ratio of 0.8 compared to around 0.4 for mid-latitudes. Long-term measurements at land-based research stations surrounding the Southern Ocean were found to be good representations at their respective latitudes; however this study highlighted the need for more long-term measurements in the region. CCN observations at Cape Grim (40∘39′ S) corresponded with CCN measurements from northern and mid-latitude sectors, while CN10 observations only corresponded with observations from the northern sector. Measurements from a simultaneous 2-year campaign at Macquarie Island (54∘30′ S) were found to represent all aerosol species well. The southernmost latitudes differed significantly from both of these stations, and previous work suggests that Antarctic stations on the East Antarctic coastline do not represent the East Antarctic sea-ice latitudes well. Further measurements are needed to capture the long-term, seasonal and longitudinal variability in aerosol processes across the Southern Ocean.
Measurement report: Understanding the seasonal cycle of Southern Ocean aerosols
The remoteness and extreme conditions of the Southern Ocean and Antarctic region have meant that observations in this region are rare, and typically restricted to summertime during research or resupply voyages. Observations of aerosols outside of the summer season are typically limited to long-term stations, such as Kennaook / Cape Grim (KCG; 40.7∘ S, 144.7∘ E), which is situated in the northern latitudes of the Southern Ocean, and Antarctic research stations, such as the Japanese operated Syowa (SYO; 69.0∘ S, 39.6∘ E). Measurements in the midlatitudes of the Southern Ocean are important, particularly in light of recent observations that highlighted the latitudinal gradient that exists across the region in summertime. Here we present 2 years (March 2016–March 2018) of observations from Macquarie Island (MQI; 54.5∘ S, 159.0∘ E) of aerosol (condensation nuclei larger than 10 nm, CN10) and cloud condensation nuclei (CCN at various supersaturations) concentrations. This important multi-year data set is characterised, and its features are compared with the long-term data sets from KCG and SYO together with those from recent, regionally relevant voyages. CN10 concentrations were the highest at KCG by a factor of ∼50 % across all non-winter seasons compared to the other two stations, which were similar (summer medians of 530, 426 and 468 cm−3 at KCG, MQI and SYO, respectively). In wintertime, seasonal minima at KCG and MQI were similar (142 and 152 cm−3, respectively), with SYO being distinctly lower (87 cm−3), likely the result of the reduction in sea spray aerosol generation due to the sea ice ocean cover around the site. CN10 seasonal maxima were observed at the stations at different times of year, with KCG and MQI exhibiting January maxima and SYO having a distinct February high. Comparison of CCN0.5 data between KCG and MQI showed similar overall trends with summertime maxima and wintertime minima; however, KCG exhibited slightly (∼10 %) higher concentrations in summer (medians of 158 and 145 cm−3, respectively), whereas KCG showed ∼40 % lower concentrations than MQI in winter (medians of 57 and 92 cm−3, respectively). Spatial and temporal trends in the data were analysed further by contrasting data to coincident observations that occurred aboard several voyages of the RSV Aurora Australis and the RV Investigator. Results from this study are important for validating and improving our models and highlight the heterogeneity of this pristine region and the need for further long-term observations that capture the seasonal cycles.
Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds
Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L−1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K  ≤ T ≤  270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below. The vertical distributions of FBAPs measured on five flights were also compared with those for bacteria, fungal spores, and pollen predicted from the EMAC global chemistry–climate model for the same geographic region.
Performance Assessment of Portable Optical Particle Spectrometer (POPS)
Accurate representation of atmospheric aerosol properties is a long-standing problem in atmospheric research. Modern pilotless aerial systems provide a new platform for atmospheric in situ measurement. However, small airborne platforms require miniaturized instrumentation due to apparent size, power, and weight limitations. A Portable Optical Particle Spectrometer (POPS) is an emerged instrument to measure ambient aerosol size distribution with high time and size resolution, designed for deployment on a small unmanned aerial system (UAS) or tethered balloon system (TBS) platforms. This study evaluates the performance of a POPS with an upgraded laser heater and additional temperature sensors in the aerosol pathway. POPS maintains its performance under different environmental conditions as long as the laser temperature remains above 25 °C and the aerosol flow temperature inside the optical chamber is 15 °C higher than the ambient temperature. The comparison between POPS and an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) suggests that the coincidence error is less than 25% when the number concentration is less than 4000 cm−3. The size distributions measured by both of them remained unaffected up to 15,000 cm−3. While both instruments’ sizing accuracy is affected by the aerosol chemical composition and morphology, the influence is more profound on the POPS.
Measurement report: Vertically resolved atmospheric properties observed over the Southern Great Plains with the ArcticShark uncrewed aerial system
This study presents the unique capability of the Department of Energy (DOE) ArcticShark – a mid-size fixed-wing uncrewed aerial system (UAS) – for measuring vertically resolved atmospheric properties over the Southern Great Plains (SGP) of the United States. Focusing on atmospheric states, such as ambient temperature, wind, and aerosol properties, we overview measurements from 32 research flights (∼ 97 flight hours) in 2023. The August operations, aided by a visual observer on a chase plane, allowed for extensive UAS coverage, surpassing typical UAS operation envelopes. Our data from March, June, and August 2023 reveal distinctive seasonal patterns within the atmospheric column through unique chemical composition measurements. In situ measurements combined with remote sensing retrievals and radiosonde measurements provided valuable insights into their consistency and complementarity. Furthermore, we demonstrate the capabilities of the ArcticShark through several case studies, including the analyses of correlations between UAS-derived atmospheric profiles and conventional radiosonde measurements, as well as the derivation of vertically resolved profiles of aerosol chemical, optical, and microphysical properties. These case studies highlight the versatility of the ArcticShark UAS as a powerful tool for comprehensive atmospheric research, effectively bridging data gaps and enhancing our understanding of vertical atmospheric structures in the region.
Ice nucleation and droplet formation by bare and coated soot particles
We have studied ice formation at temperatures relevant to homogeneous and heterogeneous ice nucleation, as well as droplet activation and hygroscopicity, of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied in order to span an atmospherically relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone in order to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation, with a comparison to a mineral dust particle that acts as an efficient ice nucleus, and particle hygroscopicity. At 253 K and 243 K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, only droplet formation was observed. At 233 K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude that both uncoated and coated soot particles comparable to those generated in our studies are unlikely to significantly contribute to the global budget of heterogeneous ice nuclei at temperatures between 233 K and 253 K. Key Points Bare and coated soot particles are unlikely to act as heterogeneous ice nuclei Organic acid coatings on soot did not significantly affect soot's IN activity Organic acid coatings on soot most likely aided in the uptake of water
Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach
In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single‐particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse‐mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine‐mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic‐containing particles serve as efficient ice nuclei while others do not. For coarse‐mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra. Key Points IN particles sampled at a field site were characterized using two techniques Organic material is ubiquitous in both ambient and IN aerosol fractions Results suggest that organic material nucleates ice with a range of efficiencies
Multi-Campaign Ship and Aircraft Observations of Marine Cloud Condensation Nuclei and Droplet Concentrations
In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosolcloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates.
A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models
A new heterogeneous ice nucleation parameterization that covers a wide temperature range (−36 to −78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at −60 °C < T < −50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: −78 °C < T < −60 °C and −50 °C < T < −36 °C. More specifically, observations at T lower than −60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than −50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below −36 °C, can potentially have a stronger influence on cloud properties, such as cloud longevity and initiation, compared to previous parameterizations.