Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
515 result(s) for "Kumar, Amrita"
Sort by:
Influenza virus exploits tunneling nanotubes for cell-to-cell spread
Tunneling nanotubes (TNTs) represent a novel route of intercellular communication. While previous work has shown that TNTs facilitate the exchange of viral or prion proteins from infected to naïve cells, it is not clear whether the viral genome is also transferred via this mechanism and further, whether transfer via this route can result in productive replication of the infectious agents in the recipient cell. Here we present evidence that lung epithelial cells are connected by TNTs, and in spite of the presence of neutralizing antibodies and an antiviral agent, Oseltamivir, influenza virus can exploit these networks to transfer viral proteins and genome from the infected to naïve cell, resulting in productive viral replication in the naïve cells. These observations indicate that influenza viruses can spread using these intercellular networks that connect epithelial cells, evading immune and antiviral defenses and provide an explanation for the incidence of influenza infections even in influenza-immune individuals and vaccine failures.
A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing
Surface plasmon resonance is a well-established technology for real-time highly sensitive label-free detection and measurement of binding kinetics between biological samples. A common drawback, however, of surface plasmon resonance detection is the necessity for far field angular resolved measurement of specular reflection, which increases the size as well as requiring precise calibration of the optical apparatus. Here we present an alternative optoelectronic approach in which the plasmonic sensor is integrated within a photovoltaic cell. Incident light generates an electronic signal that is sensitive to the refractive index of a solution via interaction with the plasmon. The photogenerated current is enhanced due to the coupling of the plasmon mode with Fabry-Pérot modes in the absorbing layer of the photovoltaic cell. The near field electrical detection of surface plasmon resonance we demonstrate will enable a next generation of cheap, compact and high throughput biosensors. Surface plasmon resonance is well established for biosensing applications, but commonly limited by complex optical detection. Here, the authors present a plasmonic sensor integrated in a photovoltaic cell, which generates an electronic signal sensitive to the solution refractive index via plasmon interaction
Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases
The mechanisms by which enteric commensal microbiota influence maturation and repair of the epithelial barrier are relatively unknown. Epithelial restitution requires active cell migration, a process dependent on dynamic turnover of focal cell-matrix adhesions (FAs). Here, we demonstrate that natural, commensal bacteria stimulate generation of reactive oxygen species (ROS) in intestinal epithelia. Bacteria-mediated ROS generation induces oxidation of target cysteines in the redox-sensitive tyrosine phosphatases, LMW-PTP and SHP-2, which in turn results in increased phosphorylation of focal adhesion kinase (FAK), a key protein regulating the turnover of FAs. Accordingly, phosphorylation of FAK substrate proteins, focal adhesion formation, and cell migration are all significantly enhanced by bacterial contact in both in vitro and in vivo models of wound closure. These results suggest that commensal bacteria regulate cell migration via induced generation of ROS in epithelial cells.
Deletion of TLR5 results in spontaneous colitis in mice
Activation of TLRs by bacterial products results in rapid activation of genes encoding products designed to protect the host from perturbing microbes. In the intestine, which is colonized by a large and diverse population of commensal bacteria, TLR signaling may not function in a simple on/off mode. Here, we show that the flagellin receptor TLR5 has an essential and nonredundant role in protecting the gut from enteric microbes. Mice lacking TLR5 (TLR5KO mice) developed spontaneous colitis, as assessed by well-defined clinical, serologic, and histopathologic indicators of this disorder. Compared with WT littermates, TLR5KO mice that had not yet developed robust colitis exhibited decreased intestinal expression of TLR5-regulated host defense genes despite having an increased bacterial burden in the colon. In contrast, such TLR5KO mice displayed markedly increased colonic expression of hematopoietic-derived proinflammatory cytokines, suggesting that elevated levels of bacterial products may result in activation of other TLRs that drive colitis in TLR5KO mice. In accordance, deletion of TLR4 rescued the colitis of TLR5KO mice in that mice lacking both TLR4 and TLR5 also had elevated bacterial loads in the colon but lacked immunological, histopathological, and clinical evidence of colitis. That an engineered innate immune deficiency ultimately results in spontaneous intestinal inflammation supports the notion that an innate immune deficiency might underlie some instances of inflammatory bowel disease.
Artificial intelligence education for radiographers, an evaluation of a UK postgraduate educational intervention using participatory action research: a pilot study
BackgroundArtificial intelligence (AI)-enabled applications are increasingly being used in providing healthcare services, such as medical imaging support. Sufficient and appropriate education for medical imaging professionals is required for successful AI adoption. Although, currently, there are AI training programmes for radiologists, formal AI education for radiographers is lacking. Therefore, this study aimed to evaluate and discuss a postgraduate-level module on AI developed in the UK for radiographers. MethodologyA participatory action research methodology was applied, with participants recruited from the first cohort of students enrolled in this module and faculty members. Data were collected using online, semi-structured, individual interviews and focus group discussions. Textual data were processed using data-driven thematic analysis.ResultsSeven students and six faculty members participated in this evaluation. Results can be summarised in the following four themes: a. participants’ professional and educational backgrounds influenced their experiences, b. participants found the learning experience meaningful concerning module design, organisation, and pedagogical approaches, c. some module design and delivery aspects were identified as barriers to learning, and d. participants suggested how the ideal AI course could look like based on their experiences.ConclusionsThe findings of our work show that an AI module can assist educators/academics in developing similar AI education provisions for radiographers and other medical imaging and radiation sciences professionals. A blended learning delivery format, combined with customisable and contextualised content, using an interprofessional faculty approach is recommended for future similar courses.Key pointsA novel postgraduate module on AI for radiographers was developed and evaluated.Blended-learning delivery, customisable and contextualised course content, and interprofessional faculty are the ways forward for an ideal AI course for radiographers.Future courses could use this approach to develop their own AI training.
Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins
A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.
An ELISA-based method for detection of rabies virus nucleoprotein-specific antibodies in human antemortem samples
Rabies is a fatal encephalitic disease in humans and animals caused by lyssaviruses, most commonly rabies virus (RABV). Human antemortem diagnosis of rabies is a complex process involving multiple sample types and tests for the detection of antibodies, antigen (protein), and nucleic acids (genomic RNA). Serological diagnosis of human rabies includes the detection of either neutralizing or binding antibodies in the cerebrospinal fluid (CSF) or serum samples from unimmunized individuals without prior rabies vaccination or passive immunization with purified immunoglobulins. While neutralizing antibodies are targeted against the surface-expressed glycoprotein (G protein), binding antibodies to viral antigens are predominantly against the nucleoprotein (N protein), although there can be antibodies against all RABV-expressed proteins. To determine N protein-specific antibody responses in the CSF and serum during RABV infection, we developed an enzyme-linked immunosorbent assay (ELISA) with purified recombinant N protein expressed in E. coli. N protein-specific immunoglobulin (Ig) subtypes IgG and IgM were detected in the CSF or serum of previously diagnosed human rabies cases. In addition, anti-N protein seroconversion was demonstrated over the course of illness in individual rabies cases. We compared the N protein ELISA results to those of an indirect fluorescent antibody (IFA) test, the current binding antibody assay used in diagnosis, and show that our ELISA is consistent with the IFA test. Sensitivity and specificity of the N protein ELISA ranged from 78.38-100% and 75.76-96.77% with respect to the IFA results. Our data provide evidence for the use of an N protein ELISA as an additional option for the detection of RABV-specific IgG or IgM antibodies in human CSF or serum specimens.
The Efficacy of a Novel Water-Soluble Anti-Mycotoxin Solution in Improving Broiler Chicken Performance Under Mycotoxin Challenge
Mycotoxins like aflatoxins (AFs), fumonisins (FBs), and ochratoxin A (OTA) pose serious health risks to humans and animals. Fruit pomace extracts, rich in natural nutrients and bioactive compounds, have the potential to enhance animal health and mitigate mycotoxin toxicity. This study evaluated a novel liquid anti-mycotoxin solution (LAS), a combination of grape and olive pomace extract administered to broiler chickens through drinking water (2 L:1000 L) for 1–42 days under a natural multi-mycotoxin challenge. The 42-day trial with 288 one-day-old male Ross 308AP95 chicks included four experimental groups: a negative control (NC); NC+LAS; a positive control (PC) group fed a diet containing 80 μg/kg AFs, 1600 μg/kg FBs, and 50 μg/kg OTA; and PC+LAS. The growth performance, oxidative defense genes (liver), and stress biomarkers (blood) were analyzed. Mycotoxin exposure negatively affected body weight (BW), the feed conversion ratio (FCR), and the oxidative defense mechanism. LAS supplementation improved BW and the FCR, reduced Nrf-2 expression, and enhanced mycotoxin detoxification via lower EPHX1 expression. Though the LAS did not fully restore performance to NC levels, it significantly mitigated mycotoxin-induced damage. This study concluded that the LAS is a promising solution to improve broiler resilience against moderate to high mycotoxin exposure.
Design and Integration of a Wireless Stretchable Multimodal Sensor Network in a Composite Wing
This article presents the development of a stretchable sensor network with high signal-to-noise ratio and measurement accuracy for real-time distributed sensing and remote monitoring. The described sensor network was designed as an island-and-serpentine type network comprising a grid of sensor “islands” connected by interconnecting “serpentines.” A novel high-yield manufacturing process was developed to fabricate networks on recyclable 4-inch wafers at a low cost. The resulting stretched sensor network has 17 distributed and functionalized sensing nodes with low tolerance and high resolution. The sensor network includes Piezoelectric (PZT), Strain Gauge (SG), and Resistive Temperature Detector (RTD) sensors. The design and development of a flexible frame with signal conditioning, data acquisition, and wireless data transmission electronics for the stretchable sensor network are also presented. The primary purpose of the frame subsystem is to convert sensor signals into meaningful data, which are displayed in real-time for an end-user to view and analyze. The challenges and demonstrated successes in developing this new system are demonstrated, including (a) developing separate signal conditioning circuitry and components for all three sensor types (b) enabling simultaneous sampling for PZT sensors for impact detection and (c) configuration of firmware/software for correct system operation. The network was expanded with an in-house developed automated stretch machine to expand it to cover the desired area. The released and stretched network was laminated into an aerospace composite wing with edge-mount electronics for signal conditioning, processing, power, and wireless communication.
Conserved Oligomeric Golgi (COG) Complex Proteins Facilitate Orthopoxvirus Entry, Fusion and Spread
Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1–COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection.