Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
94 result(s) for "Kumar, Avnish"
Sort by:
Natural resource-derived NiO nanoparticles via aloe vera for high-performance symmetric supercapacitor
This investigation reported a one-step green synthesis of nickel oxide nanoparticles (NiO NPs) using aloe vera leaves extract solution for their application in a supercapacitor. This method used aloe vera leaves as a reducing agent, which is very simple and cost-effective. The synthesized NPs were thoroughly characterized using various techniques. The X-ray diffraction analysis unequivocally confirmed the crystalline nature; field emission scanning electron microscopy and transmission electron microscopy images showed different shapes and forms of an agglomerated cluster of synthesized NPs. The absorption spectra were recorded from UV visible spectroscopy, while Fourier transform infrared spectroscopy provided insights into the functional groups present. Electrochemical assessments were carried out via cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. These experiments were performed using a 2 M KOH electrolyte within a 1.0 V potential window. Impressively, the single electrode displayed a remarkable specific capacitance of 462 F g −1 at a scan rate of 1 mV s −1 and 336 F g −1 at a current density of 0.76 A g −1 . Further, a symmetric two-electrode device (NiO||NiO) has been successfully fabricated by employing a separator between the electrodes. The device exhibited an exceptional specific capacitance of approximately 239 F g −1 , along with an energy density of 47.8 Wh kg −1 and a power density of 545 W kg −1 at 1 A g −1 current density within a 1.2 V potential window. The fabricated device also shows a retention capacity of 89% at 10 A g −1 after 2000 cycles with 114% of columbic efficiency. The present study underscores the effectiveness of the green synthesis approach in producing NiO NPs and establishes their potential as highly promising candidates for supercapacitor applications, showcasing both excellent electrochemical performance in a three-electrode system and remarkable stability in a practical two-electrode device. The results collectively highlight the efficacy of the green approach in producing NiO NPs, establishing its potential as a highly promising candidate for supercapacitor application.
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study
Non-small-cell lung cancer (NSCLC) patients often demonstrate varying clinical courses and outcomes, even within the same tumor stage. This study explores deep learning applications in medical imaging allowing for the automated quantification of radiographic characteristics and potentially improving patient stratification. We performed an integrative analysis on 7 independent datasets across 5 institutions totaling 1,194 NSCLC patients (age median = 68.3 years [range 32.5-93.3], survival median = 1.7 years [range 0.0-11.7]). Using external validation in computed tomography (CT) data, we identified prognostic signatures using a 3D convolutional neural network (CNN) for patients treated with radiotherapy (n = 771, age median = 68.0 years [range 32.5-93.3], survival median = 1.3 years [range 0.0-11.7]). We then employed a transfer learning approach to achieve the same for surgery patients (n = 391, age median = 69.1 years [range 37.2-88.0], survival median = 3.1 years [range 0.0-8.8]). We found that the CNN predictions were significantly associated with 2-year overall survival from the start of respective treatment for radiotherapy (area under the receiver operating characteristic curve [AUC] = 0.70 [95% CI 0.63-0.78], p < 0.001) and surgery (AUC = 0.71 [95% CI 0.60-0.82], p < 0.001) patients. The CNN was also able to significantly stratify patients into low and high mortality risk groups in both the radiotherapy (p < 0.001) and surgery (p = 0.03) datasets. Additionally, the CNN was found to significantly outperform random forest models built on clinical parameters-including age, sex, and tumor node metastasis stage-as well as demonstrate high robustness against test-retest (intraclass correlation coefficient = 0.91) and inter-reader (Spearman's rank-order correlation = 0.88) variations. To gain a better understanding of the characteristics captured by the CNN, we identified regions with the most contribution towards predictions and highlighted the importance of tumor-surrounding tissue in patient stratification. We also present preliminary findings on the biological basis of the captured phenotypes as being linked to cell cycle and transcriptional processes. Limitations include the retrospective nature of this study as well as the opaque black box nature of deep learning networks. Our results provide evidence that deep learning networks may be used for mortality risk stratification based on standard-of-care CT images from NSCLC patients. This evidence motivates future research into better deciphering the clinical and biological basis of deep learning networks as well as validation in prospective data.
Water physicochemical factors and oxidative stress physiology in fish, a review
Fish are among the best-studied aquatic animals due to their economic and ecological values. Fish meat is the most affordable protein source for the economically weaker section of people. The environment of almost all aquatic ecosystems has a specific influential role on or by fishes. Therefore, studying their stress biology, especially oxidative stress, is vital because it can influence their growth, production, reproduction, etc. To review the above topic, peer-reviewed electronic databases, including Web of Science, science direct, PubMed, Google Scholar, Scopus, and AGRICOLA, were searched with specific keywords associated with fish, oxidative stress, diseases, etc. The influence of abiotic stress, such as the effects of water dissolved oxygen, temperature, salinity, water hardness, alkalinity, pH, pollutants, heavy metals, and anthropogenic activities, was reviewed in the current article to draw a conclusion on the updated relation that exists between fish physiology, disease, and abiotic stressors. Oxidative stress and redox regulatory levels under the above parameters were reviewed as the stress or anti-stress responses differ in various fish models. Undoubtedly, the reviewed abiotic factors modulate fish oxidative health status to a greater extent, and therefore, these factors must be considered on a priority basis to improve the general health and immunity status of fish. The statement above remains valid in both saline and freshwater habitats.
Low ppm NO2 detection through advanced ultrasensitive copper oxide gas sensor
The imperative development of a cutting-edge environmental gas sensor is essential to proficiently monitor and detect hazardous gases, ensuring comprehensive safety and awareness. Nanostructures developed from metal oxides are emerging as promising candidates for achieving superior performance in gas sensors. NO2 is one of the toxic gases that affects people as well as the environment so its detection is crucial. The present study investigates the gas sensing capability of copper oxide-based sensor for 5 ppm of NO2 gas at 100 °C. The sensing material was synthesized using a facile precipitation method and characterized by XRD, FE-SEM, UV–visible spectroscopy, photoluminescence spectroscopy, XPS and BET techniques. The developed material shows a response equal to 67.1% at optimal temperature towards 5 ppm NO2 gas. The sensor demonstrated an impressive detection limit of 300 ppb, along with a commendable percentage response of 5.2%. Under optimized conditions, the synthesized material demonstrated its high selectivity, as evidenced by the highest percentage response recorded for NO2 gas among NO2, NH3, CO, CO2 and H2S.
Targeted Delivery of Doxorubicin-Loaded Poly (ε-caprolactone)-b-Poly (N-vinylpyrrolidone) Micelles Enhances Antitumor Effect in Lymphoma
The present study was motivated by the need to design a safe nano-carrier for the delivery of doxorubicin which could be tolerant to normal cells. PCL63-b-PNVP90 was loaded with doxorubicin (6 mg/ml), and with 49.8% drug loading efficiency; it offers a unique platform providing selective immune responses against lymphoma. In this study, we have used micelles of amphiphilic PCL63-b-PNVP90 block copolymer as nano-carrier for controlled release of doxorubicin (DOX). DOX is physically entrapped and stabilized in the hydrophobic cores of the micelles and biological roles of these micelles were evaluated in lymphoma. DOX loaded PCL63-b-PNVP90 block copolymer micelles (DOX-PCL63-b-PNVP90) shows enhanced growth inhibition and cytotoxicity against human (K-562, JE6.1 and Raji) and mice lymphoma cells (Dalton's lymphoma, DL). DOX-PCL63-b-PNVP90 demonstrates higher levels of tumoricidal effect against DOX-resistant tumor cells compared to free DOX. DOX-PCL63-b-PNVP90 demonstrated effective drug loading and a pH-responsive drug release character besides exhibiting sustained drug release performance in in-vitro and intracellular drug release experiments. Unlike free DOX, DOX-PCL63-b-PNVP90 does not show cytotoxicity against normal cells. DOX-PCL63-b-PNVP90 prolonged the survival of tumor (DL) bearing mice by enhancing the apoptosis of the tumor cells in targeted organs like liver and spleen.
Limb symmetry index on a functional test battery improves between one and five years after anterior cruciate ligament reconstruction, primarily due to worsening contralateral limb function
Evaluate change in functional performance from 1- to 5-years after anterior cruciate ligament reconstruction (ACLR). 59 participants (38 men) aged 29 ± 16 years completed three hops and one-leg rise 1- and 5-years following ACLR. Linear mixed-effects models evaluated differences in change between the ACLR and contralateral limbs. Participants were classified with stable, improving or worsening function relative to previously published minimal detectable change thresholds. Healthy controls completed the three hops (n = 41) and one-leg rise (n = 31) as reference data. The contralateral limb had a significantly greater decrease in functional performance between 1- and 5-years for the three hops, compared to the ACLR limb. Worsening was more common in the contralateral limb than the ACLR limb; resulting in significant improvements in the LSI for the single hop (mean 87% at 1-year to 95% at 5-years), side hop (77%to 86%) and one-leg rise (76% to85%). Performance of both ACLR and contralateral limbs and the LSI remained below the healthy controls. Functional performance changes differ between limbs between 1- and 5-years post-ACLR. The LSI should not be used in isolation to evaluate functional performance changes after ACLR, as it may overestimate functional improvement, due to worsening contralateral limb function. •The contralateral limb had a significantly greater decrease in function for the three hop tests compared to the ACLR limb.•The LSI improved significantly for the single hop, side hop and one-leg rise between 1- and 5-years post-ACLR.•The LSI overestimate improvement in functional ability following ACLR, due to worsening contralateral limb function.•The LSI on all four tests at 1-year post-ACLR was significantly lower than healthy controls.
Spermidine, a caloric restriction mimetic, provides neuroprotection against normal and d-galactose-induced oxidative stress and apoptosis through activation of autophagy in male rats during aging
Spermidine (SPD) is a natural polyamine present in all living organisms and is involved in the maintenance of cellular homeostasis by inducing autophagy in different model organisms. Its role as a caloric restriction mimetic (CRM) is still being investigated. We have undertaken this study to investigate whether SPD, acting as a CRM, can confer neuroprotection in d-galactose induced accelerated senescence model rat and naturally aged rats through modulation of autophagy and inflammation. Young male rats (4 months), d-gal induced (500 mg/kg b.w., subcutaneously) aging and naturally aged (22 months) male rats were supplemented with SPD (10 mg/kg b.w., orally) for 6 weeks. Standard protocols were employed to measure prooxidants, antioxidants, apoptotic cell death and electron transport chain complexes in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy and inflammatory marker genes. Our data demonstrate that SPD significantly (p ≤ 0.05) decreased the level of pro-oxidants and increased the level of antioxidants. SPD supplementation also augmented the activities of electron transport chain complexes in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. RT-PCR data revealed that SPD up-regulated the expression of autophagy genes (ATG-3, Beclin-1, ULK-1 and LC3B) and down-regulated the expression of the inflammatory gene (IL-6) in aging brain. Our results provide first line of evidence that SPD provides neuroprotection against aging-induced oxidative stress by regulating autophagy, antioxidants level and also reduces neuroinflammation. These results suggest that SPD may be beneficial for neuroprotection during aging and age-related disorders.
Current Challenges of Vaccination in Fish Health Management
Vaccination is an essential method of immunological preventive care required for the health management of all animals, including fish. More particularly, immunization is necessary for in-land aquaculture to manage diseases in fish broodstocks and healthy seed production. According to the latest statistics in 2020, 90.3 million tons of capture fishery production was achieved from the aquaculture sector. Out of the above, 78.8 million tons were from marine water aquaculture sectors, and 11.5 million tons were from inland water aquaculture sectors. About a 4% decline in fish production was achieved in 2020 in comparison to 2018 from inland aquaculture sectors. On the other hand, the digestive protein content, healthy fats, and nutritional values of fish products are comparatively more affordable than in other meat sources. In 2014, about 10% of aquatic cultured animals were lost (costing global annual losses > USD 10 billion) due to infectious diseases. Therefore, vaccination in fish, especially in broodstocks, is one of the essential approaches to stop such losses in the aquaculture sector. Fish vaccines consist of whole-killed pathogens, protein subunits, recombinant proteins, DNA, or live-attenuated vaccines. Challenges persist in the adaption of vaccination in the aquaculture sector, the route of administration, the use of effective adjuvants, and, most importantly, the lack of effective results. The use of autogenous vaccines; vaccination via intramuscular, intraperitoneal, or oral routes; and, most importantly, adding vaccines in feed using top dressing methods or as a constituent in fish feed are now emerging. These methods will lower the risk of using antibiotics in cultured water by reducing environmental contamination.
Sustainable and Scalable Approach for Enhancing the Electrochemical Performance of Molybdenum Disulfide (MoS2)
Molybdenum disulfide (MoS2), the second most thoroughly investigated two-dimensional material after graphene, has attracted considerable interest in energy storage applications owing to its exceptional qualities, including its unique crystal structure, low electronegativity, and high specific capacity. In this study, we showed that a simple ball-milling procedure causes significant improvement in the capacitive properties of the bulk MoS2 (BL-MoS2). We characterized the material before and after the milling process using X-ray diffraction (XRD) and a BET surface area analyzer to find the material’s structural, crystalline features, and surface area, respectively. We prepared electrodes of BL-MoS2 and ball-milled MoS2 (BM-MoS2) for electrochemical investigation. The charge storage characteristics were examined using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The BM-MoS2 and BL-MoS2 have a specific capacitance of 114 F/g and 96 F/g, respectively.
Synthesis and Characterization of Cadmium Oxide NPs using Sapindus mukorossi (Soapnut) as natural surfactant
The synthesis of cadmium oxide nanoparticles has been carried out in the presence of Sapindus mukorossi (Soapnut) as a surfactant and the characterisation of the synthesized nanoparticles has been carried out using analytical techniques such as XRD, magnetic studies and SEM. The synthesised cadmium oxide was CdO. The structure of the CdO was face-centred cubic. Magnetic susceptibility measurements showed that there were no unpaired electrons in CdO. Hence, CdO is diamagnetic in nature. The exact size of the cadmium oxide was found using SEM. The size of the oxide was from 28 nm to 50 nm.