Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
332 result(s) for "Kumar, Dhruv"
Sort by:
Oxidative Stress in Cancer Cell Metabolism
Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism where they adjust to the high ROS by expressing elevated levels of antioxidant proteins to detoxify them while maintaining pro-tumorigenic signaling and resistance to apoptosis. Therefore, ROS manipulation can be a potential target for cancer therapies as cancer cells present an altered redox balance in comparison to their normal counterparts. In this review, we aim to provide an overview of the generation and sources of ROS within tumor cells, ROS-associated signaling pathways, their regulation by antioxidant defense systems, as well as the effect of elevated ROS production in tumor progression. It will provide an insight into how pro- and anti-tumorigenic ROS signaling pathways could be manipulated during the treatment of cancer.
Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk
Reportedly, 300 million people worldwide are affected by the consumption of arsenic contaminated groundwater. India prominently figures amongst them and the state of Bihar has shown an upsurge in cases affected by arsenic poisoning. Escalated arsenic content in blood, leaves 1 in every 100 human being highly vulnerable to being affected by the disease. Uncontrolled intake may lead to skin, kidney, liver, bladder, or lung related cancer but even indirect forms of cancer are showing up on a regular basis with abnormal arsenic levels as the probable cause. But despite the apparent relation, the etiology has not been understood clearly. Blood samples of 2000 confirmed cancer patients were collected from pathology department of our institute. For cross-sectional design, 200 blood samples of subjects free from cancer from arsenic free pockets of Patna urban agglomeration, were collected. Blood arsenic levels in carcinoma patients as compared to sarcomas, lymphomas and leukemia were found to be higher. The geospatial map correlates the blood arsenic with cancer types and the demographic area of Gangetic plains. Most of the cancer patients with high blood arsenic concentration were from the districts near the river Ganges. The raised blood arsenic concentration in the 2000 cancer patients strongly correlates the relationship of arsenic with cancer especially the carcinoma type which is more vulnerable. The average arsenic concentration in blood of the cancer patients in the Gangetic plains denotes the significant role of arsenic which is present in endemic proportions. Thus, the study significantly correlates and advocates a strong relation of the deleterious element with the disease. It also underlines the need to address the problem by deciphering the root cause of the elevated cancer incidences in the Gangetic basin of Bihar and its association with arsenic poisoning.
Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer
Head and neck cancer is the sixth most common cancer across the globe. This is generally associated with tobacco and alcohol consumption. Cancer in the pharynx majorly arises through human papillomavirus (HPV) infection, thus classifying head and neck squamous cell carcinoma (HNSCC) into HPV-positive and HPV-negative HNSCCs. Aberrant, mesenchymal-epithelial transition factor (c-MET) signal transduction favors HNSCC progression by stimulating proliferation, motility, invasiveness, morphogenesis, and angiogenesis. c-MET upregulation can be found in the majority of head and neck squamous cell carcinomas. c-MET pathway acts on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K), alpha serine/threonine-protein kinase (Akt), mitogen-activated protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. c-MET also establishes a crosstalk pathway with epidermal growth factor receptor (EGFR) and contributes towards chemoresistance in HNSCC. In recent years, the signaling communications of c-MET/HGF in metabolic dysregulation, tumor-microenvironment and immune modulation in HNSCC have emerged. Several clinical trials have been established against c-MET/ hepatocyte growth factor (HGF) signaling network to bring up targeted and effective therapeutic strategies against HNSCC. In this review, we discuss the molecular mechanism(s) and current understanding of c-MET/HGF signaling and its effect on HNSCC.
Antioxidants in Alzheimer’s Disease: Current Therapeutic Significance and Future Prospects
Alzheimer’s disease (AD) rate is accelerating with the increasing aging of the world’s population. The World Health Organization (WHO) stated AD as a global health priority. According to the WHO report, around 82 million people in 2030 and 152 million in 2050 will develop dementia (AD contributes 60% to 70% of cases), considering the current scenario. AD is the most common neurodegenerative disease, intensifying impairments in cognition, behavior, and memory. Histopathological AD variations include extracellular senile plaques’ formation, tangling of intracellular neurofibrils, and synaptic and neuronal loss in the brain. Multiple evidence directly indicates that oxidative stress participates in an early phase of AD before cytopathology. Moreover, oxidative stress is induced by almost all misfolded protein lumps like α-synuclein, amyloid-β, and others. Oxidative stress plays a crucial role in activating and causing various cell signaling pathways that result in lesion formations of toxic substances, which foster the development of the disease. Antioxidants are widely preferred to combat oxidative stress, and those derived from natural sources, which are often incorporated into dietary habits, can play an important role in delaying the onset as well as reducing the progression of AD. However, this approach has not been extensively explored yet. Moreover, there has been growing evidence that a combination of antioxidants in conjugation with a nutrient-rich diet might be more effective in tackling AD pathogenesis. Thus, considering the above-stated fact, this comprehensive review aims to elaborate the basics of AD and antioxidants, including the vitality of antioxidants in AD. Moreover, this review may help researchers to develop effectively and potentially improved antioxidant therapeutic strategies for this disease as it also deals with the clinical trials in the stated field.
Arsenic causing gallbladder cancer disease in Bihar
In recent times Gallbladder cancer (GBC) incidences increased many folds in India and are being reported from arsenic hotspots identified in Bihar. The study aims to establish association between arsenic exposure and gallbladder carcinogenesis. In the present study, n = 200 were control volunteers and n = 152 confirmed gallbladder cancer cases. The studied GBC patient’s biological samples-gallbladder tissue, gallbladder stone, bile, blood and hair samples were collected for arsenic estimation. Moreover, n = 512 gallbladder cancer patients blood samples were also evaluated for the presence of arsenic to understand exposure level in the population. A significantly high arsenic concentration ( p  < 0.05) was detected in the blood samples with maximum concentration 389 µg/L in GBC cases in comparison to control. Similarly, in the gallbladder cancer patients, there was significantly high arsenic concentration observed in gallbladder tissue with highest concentration of 2166 µg/kg, in gallbladder stones 635 µg/kg, in bile samples 483 µg/L and in hair samples 6980 µg/kg respectively. Moreover, the n = 512 gallbladder cancer patient’s blood samples study revealed very significant arsenic concentration in the population of Bihar with maximum arsenic concentration as 746 µg/L. The raised arsenic concentration in the gallbladder cancer patients’ biological samples—gallbladder tissue, gallbladder stone, bile, blood, and hair samples was significantly very high in the arsenic exposed area. The study denotes that the gallbladder disease burden is very high in the arsenic exposed area of Bihar. The findings do provide a strong link between arsenic contamination and increased gallbladder carcinogenesis.
Thematic insights into the impact of large language models on K-12 education in rural India from student volunteers’ perspectives
Artificial Intelligence (AI)–powered tools, particularly Large Language Models (LLMs), are increasingly being explored as catalysts for educational transformation. While their application in urban and higher education contexts has gained traction, there remains a significant gap in understanding how such technologies can support K–12 learning in under-resourced rural environments. This study investigates the perceptions of student volunteer educators on the integration of LLMs in rural Indian classrooms. Drawing from 23 semi-structured interviews conducted with volunteers engaged in teaching initiatives across Rajasthan and Delhi, we employed Braun and Clarke’s thematic analysis framework to extract key themes related to AI readiness, digital infrastructure, pedagogical challenges, and community attitudes. The findings reveal a complex landscape: volunteers recognize the potential of LLMs to personalize learning, alleviate teacher workload, and provide round-the-clock academic support. However, adoption is constrained by infrastructural limitations, lack of AI literacy among teachers, language barriers, and parental skepticism. Concerns regarding student over-reliance on AI, data privacy, and ethical risks also emerged. Despite these challenges, participants emphasized that AI should serve as a supportive augmentation rather than a replacement for human-led instruction. The study highlights the need for localized implementation strategies, culturally relevant content, and structured training programs to ensure equitable and responsible integration of GenAI tools in rural schools. By foregrounding the lived experiences of volunteer teachers situated between technologically advanced urban settings and underserved rural realities, this research contributes grounded insights into the design, deployment, and policy planning of AI-based learning interventions in the Global South.
Severe Disease Burden and the Mitigation Strategy in the Arsenic-Exposed Population of Kaliprasad Village in Bhagalpur District of Bihar, India
The present study was carried out in the village Kaliprasad of Bhagalpur district of Bihar to know the arsenic exposure effect in the exposed population. A total of n = 102 households were studied, and their water and biological samples such as urine and hair were collected and analyzed in a graphite furnace atomic absorption spectrophotometer (GF-AAS). The assessment of arsenic-exposed village population reveals that the villagers were suffering from serious health-related problems such as skin manifestations (hyperkeratosis and melanosis in their palm and soles), breathlessness, general body weakness, mental disorders, diabetes, hypertension (raised blood pressure), hormonal imbalance, neurological disorders, and few cancer cases. About 77% of household hand pump water had arsenic level more than the WHO recommended level of 10 µg/L, with highest level of 523 µg/L. Moreover, in 60% individual’s urine samples, arsenic concentration was very high with maximum 374 µg/L while in hair 64% individuals had arsenic concentration above the permissible limit with maximum arsenic concentration of 11,398 µg/kg. The hazard quotient (HQ) was also calculated to know the arsenic risk percentage in children as 87.11%, in females as 83.15%, and in males as 82.27% by groundwater. This has surpassed the threshold value of 1×10-6 for carcinogenic risk (CR) in children, female, and male population group in the village. Hence, the exposed population of Kaliprasad village are at very high risk of the disease burden.
The role of generative AI tools in shaping mechanical engineering education from an undergraduate perspective
This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI’s reliability in numerical tasks and its potential impact on students’ problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI’s role in engineering education and its implications for future learning methodologies.
Mercury poisoning in women and infants inhabiting the Gangetic plains of Bihar: risk assessment
Mercury is a persistent, bio-accumulative, and hazardous contaminant. When released into the environment, it accumulates in water sediments, converting it to poisonous methylmercury that enters the food chain. The present study was carried out in habitations from the 11 districts of Bihar (India). In the study, n  = 224 lactating women and their infants n  = 172 infants participated. After obtaining the written informed consent, their breast milk, urine, and blood were collected for mercury estimation. The breastmilk content was measured in n  = 181 subjects, in which 74% women had their breastmilk higher than the WHO permissible limit (< 1.7 μg/L), while 26% of the women had their breast milk below the permissible limit. The blood mercury content showed that 19% subjects had mercury content above the permissible limit [20 μg/L]. In urine mercury estimation, 49% women had mercury content above the permissible limit [10 μg/L], while, 51% women had the mercury content below the permissible limit. In the child’s urine, 54% infants had their mercury content in urine above the permissible limit [10 μg/L] while 46% infants had content below the permissible limit. The study indicates that 20% of infants had the complete accumulation of mercury in their body which is highly toxic for them. However, the mercury content in the food (wheat) had the contamination with in the permissible limit [100 μg/kg]. There was a significant correlation found between the breastmilk and child’s urine and mother’s urine. The HQ study also correlates the mercury poisoning effect with 100% of the mother’s and 66% of the infants exceeding the limit of non-carcinogenic risk. The Monte Carlo and multivariate study correlates the high health risk in the studied population due to mercury poisoning. The entire study concludes that population inhabitation in the Gangetic plains of Bihar are exposed to mercury poisoning which may be due to geogenic or anthropogenic sources. But, the levels of mercury contamination above the permissible limit could lead to neurogenerative changes in the lactating mothers and their infants. To control the present problem medical intervention is immediately required.
High arsenic contamination in the breast milk of mothers inhabiting the Gangetic plains of Bihar: a major health risk to infants
Groundwater arsenic poisoning has posed serious health hazards in the exposed population. The objective of the study is to evaluate the arsenic ingestion from breastmilk among pediatric population in Bihar. In the present study, the total women selected were n  = 513. Out of which n  = 378 women after consent provided their breastmilk for the study, n  = 58 subjects were non-lactating but had some type of disease in them and n  = 77 subjects denied for the breastmilk sample. Hence, they were selected for the women health study. In addition, urine samples from n  = 184 infants’ urine were collected for human arsenic exposure study. The study reveals that the arsenic content in the exposed women (in 55%) was significantly high in the breast milk against the WHO permissible limit 0.64 µg/L followed by their urine and blood samples as biological marker. Moreover, the child’s urine also had arsenic content greater than the permissible limit (< 50 µg/L) in 67% of the studied children from the arsenic exposed regions. Concerningly, the rate at which arsenic is eliminated from an infant’s body via urine in real time was only 50%. This arsenic exposure to young infants has caused potential risks and future health implications. Moreover, the arsenic content was also very high in the analyzed staple food samples such as rice, wheat and potato which is the major cause for arsenic contamination in breastmilk. The study advocates for prompt action to address the issue and implement stringent legislative measures in order to mitigate and eradicate this pressing problem that has implications for future generations.