Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Kumon, Mami"
Sort by:
H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos
Parental epigenomes are established during gametogenesis. While they are largely reset after fertilization, broad domains of Polycomb repressive complex 2 (PRC2)-mediated formation of lysine 27–trimethylated histone H3 (H3K27me3) are inherited from oocytes in mice. How maternal H3K27me3 is established and inherited by embryos remains elusive. Here, we show that PRC1-mediated formation of lysine 119–monoubiquititinated histone H2A (H2AK119ub1) confers maternally heritable H3K27me3. Temporal profiling of H2AK119ub1 dynamics revealed that atypically broad H2AK119ub1 domains are established, along with H3K27me3, during oocyte growth. From the two-cell stage, H2AK119ub1 is progressively deposited at typical Polycomb targets and precedes H3K27me3. Reduction of H2AK119ub1 by depletion of Polycomb group ring finger 1 (PCGF1) and PCGF6—essential components of variant PRC1 (vPRC1)—leads to H3K27me3 loss at a subset of genes in oocytes. The gene-selective H3K27me3 deficiency is irreversibly inherited by embryos, causing loss of maternal H3K27me3-dependent imprinting, embryonic sublethality and placental enlargement at term. Collectively, our study unveils preceding dynamics of H2AK119ub1 over H3K27me3 at the maternal-to-zygotic transition, and identifies PCGF1/6–vPRC1 as an essential player in maternal epigenetic inheritance. In early mouse embryos, PRC1-mediated H2AK119ub1 deposition precedes H3K27me3. Deficiency in variant PRC1 reduces H2AK119ub1 and leads to gene-selective loss of H3K27me3 in oocytes, which is inherited by embryos.
Transcriptomic signatures in trophectoderm and inner cell mass of human blastocysts classified according to developmental potential, maternal age and morphology
Selection of high-quality embryos is important to achieve successful pregnancy in assisted reproductive technology (ART). Recently, it has been debated whether RNA-sequencing (RNA-Seq) should be applied to ART to predict embryo quality. However, information on genes that can serve as markers for pregnant expectancy is limited. Furthermore, there is no information on which transcriptome of trophectoderm (TE) or inner cell mass (ICM) is more highly correlated with pregnant expectancy. Here, we performed RNA-Seq analysis of TE and ICM of human blastocysts, the pregnancy expectation of which was retrospectively determined using the clinical outcomes of 1,890 cases of frozen-thawed blastocyst transfer. We identified genes that were correlated with the expected pregnancy rate in ICM and TE, respectively, with a larger number of genes identified in TE than in ICM. Downregulated genes in the TE of blastocysts that were estimated to have lower expectation of pregnancy included tight junction-related genes such as CXADR and ATP1B1 , which have been implicated in peri-implantation development. Moreover, we identified dozens of differentially expressed genes by regrouping the blastocysts based on the maternal age and the Gardner score. Additionally, we showed that aneuploidy estimation using RNA-Seq datasets does not correlate with pregnancy expectation. Thus, our study provides an expanded list of candidate genes for the prediction of pregnancy in human blastocyst embryos.
Polycomb repressive complexes 1 and 2 are each essential for maintenance of X inactivation in extra-embryonic lineages
In female mammals, one of the two X chromosomes becomes inactivated during development by X-chromosome inactivation (XCI). Although Polycomb repressive complex (PRC) 1 and PRC2 have both been implicated in gene silencing, their exact roles in XCI during in vivo development have remained elusive. To this end, we have studied mouse embryos lacking either PRC1 or PRC2. Here we demonstrate that the loss of either PRC has a substantial impact on maintenance of gene silencing on the inactive X chromosome (Xi) in extra-embryonic tissues, with overlapping yet different genes affected, indicating potentially independent roles of the two complexes. Importantly, a lack of PRC1 does not affect PRC2/H3K27me3 accumulation and a lack of PRC2 does not impact PRC1/H2AK119ub1 accumulation on the Xi. Thus PRC1 and PRC2 contribute independently to the maintenance of XCI in early post-implantation extra-embryonic lineages, revealing that both Polycomb complexes can be directly involved and differently deployed in XCI. Polycomb repressive complexes 1 and 2 both regulate maintenance of X inactivation in extra-embryonic lineages of post-implantation embryos by affecting overlapping yet different genes, thus implying potentially independent roles for the two complexes.
Successful Pregnancy After the Vitrification of Zygotes Using Commercial Vitrification Solutions and Conventional Straws to Protect Against Infections in Liquid Nitrogen
To report on successful birth after the transfer of postthawed human zygotes that were vitrified using a conventional straw for the purpose of protecting them from infections and a low-toxicity cryoprotectant that is commercially sold. A primary infertile couple presented at our IVF program. After being checked for fertilization, the embryos were not transferred to the uterus at that cycle. Instead, all of them were cryopreserved at the 2-pronuclei stage using our original vitrification method. After the vitrification and warming of four zygotes, two embryos were transferred into the uterus. Twenty-one 2-pronuclei embryos were vitrified in liquid nitrogen. After 2 embryos were thawed and transferred, successful pregnancy was the outcome, and a healthy boy was born at term. Vitrification is a simple procedure and requires less time than slow freezing. Vitrification of zygotes in a conventional straw seems to be sufficient for viability and works to store the zygotes safely.