Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
25
result(s) for
"Kuo, Shu-Ming"
Sort by:
Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality
2016
Influenza is one of the most common human respiratory diseases, and represents a serious public health concern. However, the high mutability of influenza viruses has hampered vaccine development, and resistant strains to existing anti-viral drugs have also emerged. Novel anti-influenza therapies are urgently needed, and in this study, we describe the anti-viral properties of a Spirulina (
Arthrospira platensis
) cold water extract. Anti-viral effects have previously been reported for extracts and specific substances derived from Spirulina, and here we show that this Spirulina cold water extract has low cellular toxicity, and is well-tolerated in animal models at one dose as high as 5,000 mg/kg, or 3,000 mg/kg/day for 14 successive days. Anti-flu efficacy studies revealed that the Spirulina extract inhibited viral plaque formation in a broad range of influenza viruses, including oseltamivir-resistant strains. Spirulina extract was found to act at an early stage of infection to reduce virus yields in cells and improve survival in influenza-infected mice, with inhibition of influenza hemagglutination identified as one of the mechanisms involved. Together, these results suggest that the cold water extract of Spirulina might serve as a safe and effective therapeutic agent to manage influenza outbreaks, and further clinical investigation may be warranted.
Journal Article
A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection
2021
SARS-CoV-2, the causative agent of COVID-19
1
, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein
1
–
6
. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics
7
–
17
. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (
K
D
= 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC
50
= 0.42 μg mL
−1
). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log
10
. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.
Here, the authors report the engineering, structural and biological characterization of synthetic nanobodies (sybodies) that display potent therapeutic activity against SARS-CoV-2 infection in animal models via targeting the virus receptor-binding domain.
Journal Article
Genomic Signatures for Avian H7N9 Viruses Adapting to Humans
by
Yang, Shu-Li
,
Kuo, Shu-Ming
,
Hsiao, Mei-Ren
in
Adaptability
,
Amino Acid Substitution
,
Amino acids
2016
An avian influenza A H7N9 virus emerged in March 2013 and caused a remarkable number of human fatalities. Genome variability in these viruses may provide insights into host adaptability. We scanned over 140 genomes of the H7N9 viruses isolated from humans and identified 104 positions that exhibited seven or more amino acid substitutions. Approximately half of these substitutions were identified in the influenza ribonucleoprotein (RNP) complex. Although PB2 627K of the avian virus promotes replication in humans, 45 of the 147 investigated PB2 sequences retained the E signature at this position, which is an avian characteristic. We discovered 10 PB2 substitutions that covaried with K627E. An RNP activity assay showed that Q591K, D701N, and M535L restored the polymerase activity in human cells when 627K transformed to an avian-like E. Genomic analysis of the human-isolated avian influenza virus is crucial in assessing genome variability, because relationships between position-specific variations can be observed and explored. In this study, we observed alternative positions that can potentially compensate for PB2 627K, a well-known marker for cross-species infection. An RNP assay suggested Q591K, D701N, and M535L as potential markers for an H7N9 virus capable of infecting humans.
Journal Article
Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy
2017
Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both critical to the prevention and control of emerging viruses that cross species barriers to target new hosts. Using a proteomic approach, we revealed a novel role for TUFM as a host restriction factor that exerts an inhibitory effect on avian-signature PB2 627 E influenza virus propagation in human cells. We further found that increased TUFM-dependent autophagy correlates with the inhibitory effect on avian-signature influenza virus replication and may serve as a key intrinsic mechanism to restrict avian influenza virus infection in humans. These findings provide new insight regarding the TUFM mitochondrial protein and may have important implications for the development of novel antiviral strategies. An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both critical to the prevention and control of emerging viruses that cross species barriers to target new hosts. Using a proteomic approach, we revealed a novel role for TUFM as a host restriction factor that exerts an inhibitory effect on avian-signature PB2 627 E influenza virus propagation in human cells. We further found that increased TUFM-dependent autophagy correlates with the inhibitory effect on avian-signature influenza virus replication and may serve as a key intrinsic mechanism to restrict avian influenza virus infection in humans. These findings provide new insight regarding the TUFM mitochondrial protein and may have important implications for the development of novel antiviral strategies.
Journal Article
Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus
2019
The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3′ UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.
[Display omitted]
Journal Article
A potent synthetic nanobody targets RBD and protects mice from SARS-CoV-2 infection
by
Hutter, Cedric Aj
,
Cai, Hongmin
,
Yao, Hebang
in
ACE2
,
Angiotensin-converting enzyme 2
,
Antibodies
2020
ABSTRACT SARS-CoV-2, the causative agent of COVID-191, recognizes host cells by attaching its receptor-binding domain (RBD) to the host receptor ACE22–7. Neutralizing antibodies that block RBD-ACE2 interaction have been a major focus for therapeutic development8–18. Llama-derived single-domain antibodies (nanobodies, ∼15 kDa) offer advantages including ease of production and possibility for direct delivery to the lungs by nebulization19, which are attractive features for bio-drugs against the global respiratory disease. Here, we generated 99 synthetic nanobodies (sybodies) by in vitro selection using three libraries. The best sybody, MR3 bound to RBD with high affinity (KD = 1.0 nM) and showed high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.40 μg mL−1). Structural, biochemical, and biological characterization of sybodies suggest a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency were generated by structure-based design, biparatopic construction, and divalent engineering. Among these, a divalent MR3 conjugated with the albumin-binding domain for prolonged half-life displayed highest potency (IC50 = 12 ng mL−1) and protected mice from live SARS-CoV-2 challenge. Our results pave the way to the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid responses for future outbreaks. Competing Interest Statement The authors have declared no competing interest. Footnotes * In this revision, we include data to show that the engineered sybody MR3 can protect mice from live SARS-CoV-2 infection.
Genomic Signatures for Avian H7N9 Viruses Adapting to Humans: e0148432
2016
An avian influenza A H7N9 virus emerged in March 2013 and caused a remarkable number of human fatalities. Genome variability in these viruses may provide insights into host adaptability. We scanned over 140 genomes of the H7N9 viruses isolated from humans and identified 104 positions that exhibited seven or more amino acid substitutions. Approximately half of these substitutions were identified in the influenza ribonucleoprotein (RNP) complex. Although PB2 627K of the avian virus promotes replication in humans, 45 of the 147 investigated PB2 sequences retained the E signature at this position, which is an avian characteristic. We discovered 10 PB2 substitutions that covaried with K627E. An RNP activity assay showed that Q591K, D701N, and M535L restored the polymerase activity in human cells when 627K transformed to an avian-like E. Genomic analysis of the human-isolated avian influenza virus is crucial in assessing genome variability, because relationships between position-specific variations can be observed and explored. In this study, we observed alternative positions that can potentially compensate for PB2 627K, a well-known marker for cross-species infection. An RNP assay suggested Q591K, D701N, and M535L as potential markers for an H7N9 virus capable of infecting humans.
Journal Article
Rational design of non-damaging capacitively coupled plasma etching and photoresist stripping processes for ultralow k dielectric materials
2010
Resistance-capacitance delay, crosstalk, and power dissipation associated with the increasing capacitance of interconnect structures limits the performance of high-speed microelectronics and leads to the demand for porous ultralow dielectric constant (ULK) material introduction. Process integration of ULK dielectrics requires plasma etching of dielectric material, stripping of the post-etching photoresist (PR) mask, and surface cleaning of plasma-etching-related residues, without damaging the dielectric. Dual frequency capacitively coupled plasma (CCP) reactor are becoming the standard for etching of ULK materials. In this work, we evaluated ULK-compatible PR stripping using both remote plasma and in situ ashing processes coordinated with CCP fluorocarbon (FC)-based ULK etching. Remote H2 plasma enabled a high PR ashing rate while introducing little ULK damage at an elevated substrate temperature (275 °C), and was the best for our remote plasma ashing processes. In situ ashing, with the advantage of no need for an additional dedicated reactor, is preferable to the remote plasma ashing for industry, and we studied in detail CO2 in situ ashing process. The ULK damage introduced during CO2 in situ ashing increased with atomic oxygen density as a function of chamber pressure. To compare the performance of different ashing processes for PR stripping from ULK material, we introduced an ashing efficiency (AE) parameter which is defined as the thickness of PR removed over the thickness of ULK simultaneously damaged, and can be considered a process figure of merit. A high AE can be obtained under low pressure operation, which suppresses ULK damage with minimal atomic oxygen while combining with a RF bias to enhance the PR ashing rate. The preceding ULK etching process using 10% C4F8/Ar plasma deposits FC coating on ULK feature sidewalls. For H2-based remote plasma at high temperature, most of FC coating was removed rapidly and its impact on ULK ashing damage was minor. For CO2 in situ ashing, FC coating remained on ULK sidewalls and provided effective protection of ULK. FC protection was essential for the success of the CO2 in situ ashing process. A strong decrease of ULK post-ashing damage with increasing FC coverage was found, which may be due to surface protection by FC surface coverage along with poresealing by the FC material.
Dissertation
Application and comparison of several machine learning algorithms and their integration models in regression problems
by
Shu, Ming-Hung
,
Hsu, Bi-Min
,
Huang, Jui-Chan
in
Algorithms
,
Artificial Intelligence
,
Artificial neural networks
2020
With the rapid development of machine learning technology, as a regression problem that helps people to find the law from the massive data to achieve the prediction effect, more and more people pay attention. Data prediction has become an important part of people’s daily life. Currently, the technology is widely used in many fields such as weather forecasting, medical diagnosis and financial forecasting. Therefore, the research of machine learning algorithms in regression problems is a research hotspot in the field of machine learning in recent years. However, real-world regression problems often have very complex internal and external factors, and various machine learning algorithms have different effects on scalability and predictive performance. In order to better study the application effect of machine learning algorithm in regression problem, this paper mainly adopts three common machine learning algorithms: BP neural network, extreme learning machine and support vector machine. Then, by comparing the effects of the single model and integrated model of these machine learning algorithms in the application of regression problems, the advantages and disadvantages of each machine learning algorithm are studied. Finally, the performance of each machine learning algorithm in regression prediction is verified by simulation experiments on four different data sets. The results show that the research on several machine learning algorithms and their integration models has certain feasibility and rationality.
Journal Article