Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
142
result(s) for
"Kurahashi, Hiroki"
Sort by:
The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis
2020
Pathogenic bacteria of the genus
Bartonella
can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in
Bartonella henselae
to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen,
Bartonella quintana
, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation.
Pathogenic bacteria of the genus
Bartonella
can induce vasoproliferative lesions during infection. Here, Tsukamoto et al. show that this effect is caused by a secreted protein that induces cell proliferation and angiogenesis by acting as an analog of the host’s vascular endothelial growth factor (VEGF).
Journal Article
Experimental method for haplotype phasing across the entire length of chromosome 21 in trisomy 21 cells using a chromosome elimination technique
2022
Modern sequencing technologies produce a single consensus sequence without distinguishing between homologous chromosomes. Haplotype phasing solves this limitation by identifying alleles on the maternal and paternal chromosomes. This information is critical for understanding gene expression models in genetic disease research. Furthermore, the haplotype phasing of three homologous chromosomes in trisomy cells is more complicated than that in disomy cells. In this study, we attempted the accurate and complete haplotype phasing of chromosome 21 in trisomy 21 cells. To separate homologs, we established three corrected disomy cell lines (ΔPaternal chromosome, ΔMaternal chromosome 1, and ΔMaternal chromosome 2) from trisomy 21 induced pluripotent stem cells by eliminating one chromosome 21 utilizing the Cre-loxP system. These cells were then whole-genome sequenced by a next-generation sequencer. By simply comparing the base information of the whole-genome sequence data at the same position between each corrected disomy cell line, we determined the base on the eliminated chromosome and performed phasing. We phased 51,596 single nucleotide polymorphisms (SNPs) on chromosome 21, randomly selected seven SNPs spanning the entire length of the chromosome, and confirmed that there was no contradiction by direct sequencing.
Journal Article
Age-Related Decrease of Meiotic Cohesins in Human Oocytes
2014
Aneuploidy in fetal chromosomes is one of the causes of pregnancy loss and of congenital birth defects. It is known that the frequency of oocyte aneuploidy increases with the human maternal age. Recent data have highlighted the contribution of cohesin complexes in the correct segregation of meiotic chromosomes. In mammalian oocytes, cohesion is established during the fetal stages and meiosis-specific cohesin subunits are not replenished after birth, raising the possibility that the long meiotic arrest of oocytes facilitates a deterioration of cohesion that leads to age-related increases in aneuploidy. We here examined the cohesin levels in dictyate oocytes from different age groups of humans and mice by immunofluorescence analyses of ovarian sections. The meiosis-specific cohesin subunits, REC8 and SMC1B, were found to be decreased in women aged 40 and over compared with those aged around 20 years (P<0.01). Age-related decreases in meiotic cohesins were also evident in mice. Interestingly, SMC1A, the mitotic counterpart of SMC1B, was substantially detectable in human oocytes, but little expressed in mice. Further, the amount of mitotic cohesins of mice slightly increased with age. These results suggest that, mitotic and meiotic cohesins may operate in a coordinated way to maintain cohesions over a sustained period in humans and that age-related decreases in meiotic cohesin subunits impair sister chromatid cohesion leading to increased segregation errors.
Journal Article
Target enrichment long-read sequencing with adaptive sampling can determine the structure of the small supernumerary marker chromosomes
by
Tasuku, Mariya
,
Inagaki Hidehito
,
Miyai Syunsuke
in
Chromosome rearrangements
,
Chromosomes
,
Cytogenetics
2022
Structural analysis of small supernumerary marker chromosomes (sSMCs) has revealed that many have complex structures. Structural analysis of sSMCs by whole genome sequencing using short-read sequencers is challenging however because most present with a low level of mosaicism and consist of a small region of the involved chromosome. In this present study, we applied adaptive sampling using nanopore long-read sequencing technology to enrich the target region and thereby attempted to determine the structure of two sSMCs with complex structural rearrangements previously revealed by cytogenetic microarray. In adaptive sampling, simple specification of the target region in the FASTA file enables to identify whether or not the sequencing DNA is included in the target, thus promoting efficient long-read sequencing. To evaluate the target enrichment efficiency, we performed conventional pair-end short-read sequencing in parallel. Sequencing with adaptive sampling achieved a target enrichment at about a 11.0- to 11.5-fold higher coverage rate than conventional pair-end sequencing. This enabled us to quickly identify all breakpoint junctions and determine the exact sSMC structure as a ring chromosome. In addition to the microhomology and microinsertion at the junctions, we identified inverted repeat structure in both sSMCs, suggesting the common generation mechanism involving replication impairment. Adaptive sampling is thus an easy and beneficial method of determining the structures of complex chromosomal rearrangements.
Journal Article
A case of a parthenogenetic 46,XX/46,XY chimera presenting ambiguous genitalia
2020
Sex-chromosome discordant chimerism (XX/XY chimerism) is a rare chromosomal disorder in humans. We report a boy with ambiguous genitalia and hypospadias, showing 46,XY[26]/46,XX[4] in peripheral blood cells. To clarify the mechanism of how this chimerism took place, we carried out whole-genome genotyping using a SNP array and microsatellite analysis. The B-allele frequency of the SNP array showed a mixture of three and five allele combinations, which excluded mosaicism but not chimerism, and suggested the fusion of two embryos or a shared parental haplotype between the two parental cells. All microsatellite markers showed a single maternal allele. From these results, we concluded that this XX/XY chimera is composed of two different paternal alleles and a single duplicated maternal genome. This XX/XY chimera likely arose from a diploid maternal cell that was formed via endoduplication of the maternal genome just before fertilization, being fertilized with both X and Y sperm.
Journal Article
Incontinentia pigmenti inherited from a father with a low level atypical IKBKG deletion mosaicism: a case report
by
Kato, Takema
,
Sugimoto, Atsuya
,
Kurahashi, Hiroki
in
Antimicrobial agents
,
Case Report
,
Case reports
2022
Background
Incontinentia pigmenti (IP) is an X-liked dominant genodermatosis caused by mutations of the
IKBKG
/
NEMO
gene. IP is mostly lethal in males in utero, and only very rare male cases with a somatic mosaic mutation or a 47,XXY karyotype have been reported.
Case presentation
We here report a case of an
IKBKG
gene deletion in a female infant presenting with a few blisters and erythema in her upper arms at birth. MLPA analysis revealed a rare 94 kb deletion in this patient, encompassing the
IKBKG
gene and
IKBKGP
pseudogene. PCR analysis indicated the presence of
Alu
elements at both ends of the deletion, suggesting non-allelic homologous recombination as an underlying mechanism. Notably, a low-level mosaic deletion was identified in her father’s peripheral blood leukocytes by PCR, suggesting a rare father-to-daughter transmission of IP.
Conclusion
In family studies for an apparently sporadic IP case, parental analysis that includes the father is recommended due to the possibility of male mosaicism.
Journal Article
An Analysis of Differentially Expressed Coding and Long Non-Coding RNAs in Multiple Models of Skeletal Muscle Atrophy
2021
The loss of skeletal muscle mass (muscle atrophy or wasting) caused by aging, diseases, and injury decreases quality of life, survival rates, and healthy life expectancy in humans. Although long non-coding RNAs (lncRNAs) have been implicated in skeletal muscle formation and differentiation, their precise roles in muscle atrophy remain unclear. In this study, we used RNA-sequencing (RNA-Seq) to examine changes in the expression of lncRNAs in four muscle atrophy conditions (denervation, casting, fasting, and cancer cachexia) in mice. We successfully identified 33 annotated lncRNAs and 18 novel lncRNAs with common expression changes in all four muscle atrophy conditions. Furthermore, an analysis of lncRNA–mRNA correlations revealed that several lncRNAs affected small molecule biosynthetic processes during muscle atrophy. These results provide novel insights into the lncRNA-mediated regulatory mechanism underlying muscle atrophy and may be useful for the identification of promising therapeutic targets.
Journal Article
Breakpoints in complex chromosomal rearrangements correspond to transposase-accessible regions of DNA from mature sperm
by
Ohashi, Hirofumi
,
Inagaki, Hidehito
,
Kurahashi, Hiroki
in
Breakpoints
,
Child development
,
Chromatin
2023
Constitutional complex chromosomal rearrangements (CCRs) are rare cytogenetic aberrations arising in the germline via an unknown mechanism. Here we analyzed the breakpoint junctions of microscopically three-way or more complex translocations using comprehensive genomic and epigenomic analyses. All of these translocation junctions showed submicroscopic genomic complexity reminiscent of chromothripsis. The breakpoints were clustered within small genomic domains with junctions showing microhomology or microinsertions. Notably, all of the de novo cases were of paternal origin. The breakpoint distributions corresponded specifically to the ATAC-seq (assay for transposase-accessible chromatin with sequencing) read data peak of mature sperm and not to other chromatin markers or tissues. We propose that DNA breaks in CCRs may develop in an accessible region of densely packaged chromatin during post-meiotic spermiogenesis.
Journal Article
Single sperm karyotyping of testicular sperm in non-obstructive and obstructive azoospermia using next generation sequencing
2025
The sperm of infertile men have higher rates of chromosomal abnormalities than those of fertile men. Miscarriage rate is also higher following testicular sperm extraction combined with intracytoplasmic sperm injection (TESE-ICSI). Sperm chromosomal abnormalities are assumed to be the cause of miscarriages. Previous testicular sperm karyotyping studies have only examined a few selected chromosomes using fluorescence in situ hybridization. The aim of this study was to provide a more detailed analysis of sperm karyotyping by analyzing all chromosomes using next-generation sequencing (NGS) in clinically usable testicular sperm. Sperm discarded after clinical use was collected for NGS. Additionally, sperm were individually collected by micromanipulation from patients with obstructive azoospermia (OA) and non-obstructive azoospermia (NOA) who underwent TESE-ICSI. For comparison, ejaculated sperm from control and balanced translocation (BT) carriers were examined. Karyotyping was performed on individual sperm cells using NGS. The number of normal and aberrant sperm was compared. Seventeen patients participated in this study: control (n = 4), BT (n = 3), OA (n = 5), and NOA (n = 5). Ten sperm samples per patient were analyzed. The total acquisition rate for single sperm karyotyping was 85% (145/170). Karyotyping of sperm from the BT group revealed sperm with unbalanced chromosomes derived from carrier translocations. Among the NOA group, 7/41 (17%) sperm samples exhibited aberrant karyotypes, whereas no aberrant sperm were identified in the control and OA groups. Individual differences were observed in the frequency of sperm chromosomal abnormalities among patients with NOA. In conclusion, sperm chromosomal abnormalities are frequently observed in patients with NOA even after sperm selection for clinical use. As the frequency of chromosomal abnormalities varies among patients with NOA, single sperm sequencing may help identify patients with NOA most likely to benefit from PGT-A.
Journal Article
Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy
by
Takeda, Shin’ichi
,
Kuga, Atsushi
,
Kurahashi, Hiroki
in
3' Untranslated Regions - genetics
,
631/208/2489/144
,
631/208/726/2001
2011
Talking antisense:
fukutin
rescue in muscular dystrophy
Fukuyama muscular dystrophy is caused by the insertion of a mobile genetic element, the SVA retrotransposon, into the non-coding region of the
fukutin
gene. Tatsushi Toda and colleagues show that this insertion truncates the fukutin transcript as a result of an abnormal splicing event, a situation known as pathogenic exon trapping. Fukutin function is restored by treatment of dystrophy mouse model cells or human patient cells with antisense oligonucleotides that prevent the abnormal splicing. The results have implications for other diseases that show SVA exon trapping.
Fukuyama muscular dystrophy (FCMD; MIM253800), one of the most common autosomal recessive disorders in Japan, was the first human disease found to result from ancestral insertion of a SINE-VNTR-
Alu
(SVA) retrotransposon into a causative gene
1
,
2
,
3
. In FCMD, the SVA insertion occurs in the 3′ untranslated region (UTR) of the
fukutin
gene. The pathogenic mechanism for FCMD is unknown, and no effective clinical treatments exist. Here we show that aberrant messenger RNA (mRNA) splicing, induced by SVA exon-trapping, underlies the molecular pathogenesis of FCMD. Quantitative mRNA analysis pinpointed a region that was missing from transcripts in patients with FCMD. This region spans part of the 3′ end of the fukutin coding region, a proximal part of the 3′ UTR and the SVA insertion. Correspondingly,
fukutin
mRNA transcripts in patients with FCMD and SVA knock-in model mice were shorter than the expected length. Sequence analysis revealed an abnormal splicing event, provoked by a strong acceptor site in SVA and a rare alternative donor site in
fukutin
exon 10. The resulting product truncates the fukutin carboxy (C) terminus and adds 129 amino acids encoded by the SVA. Introduction of antisense oligonucleotides (AONs) targeting the splice acceptor, the predicted exonic splicing enhancer and the intronic splicing enhancer prevented pathogenic exon-trapping by SVA in cells of patients with FCMD and model mice, rescuing normal
fukutin
mRNA expression and protein production. AON treatment also restored fukutin functions, including
O
-glycosylation of α-dystroglycan (α-DG) and laminin binding by α-DG. Moreover, we observe exon-trapping in other SVA insertions associated with disease (hypercholesterolemia
4
, neutral lipid storage disease
5
) and human-specific SVA insertion in a novel gene. Thus, although splicing into SVA is known
6
,
7
,
8
, we have discovered in human disease a role for SVA-mediated exon-trapping and demonstrated the promise of splicing modulation therapy as the first radical clinical treatment for FCMD and other SVA-mediated diseases.
Journal Article