Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "Kurisu, Genji"
Sort by:
Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer
Photosynthetic complex I enables cyclic electron flow around photosystem I, a regulatory mechanism for photosynthetic energy conversion. We report a 3.3-angstrom-resolution cryo–electron microscopy structure of photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus. The model reveals structural adaptations that facilitate binding and electron transfer from the photosynthetic electron carrier ferredoxin. By mimicking cyclic electron flow with isolated components in vitro, we demonstrate that ferredoxin directly mediates electron transfer between photosystem I and complex I, instead of using intermediates such as NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). A large rate constant for association of ferredoxin to complex I indicates efficient recognition, with the protein subunit NdhS being the key component in this process.
Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I
Photosynthetic organisms capture light energy to drive their energy metabolism, and employ the chemical reducing power to convert carbon dioxide (CO 2 ) into organic molecules. Photorespiration, however, significantly reduces the photosynthetic yields. To survive under low CO 2 concentrations, cyanobacteria evolved unique carbon-concentration mechanisms that enhance the efficiency of photosynthetic CO 2 fixation, for which the molecular principles have remained unknown. We show here how modular adaptations enabled the cyanobacterial photosynthetic complex I to concentrate CO 2 using a redox-driven proton-pumping machinery. Our cryo-electron microscopy structure at 3.2 Å resolution shows a catalytic carbonic anhydrase module that harbours a Zn 2+ active site, with connectivity to proton-pumping subunits that are activated by electron transfer from photosystem I. Our findings illustrate molecular principles in the photosynthetic complex I machinery that enabled cyanobacteria to survive in drastically changing CO 2 conditions. Cyanobacteria evolved carbon-concentration mechanisms to enhance the efficiency of photosynthetic CO 2 fixation, but the molecular principles have remained unknown. Here authors use cryo-EM to reveal how modular adaptations enabled the photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus to concentrate CO 2 .
Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism
Cyanobacteriochromes are cyanobacterial tetrapyrrole-binding photoreceptors that share a bilin-binding GAF domain with photoreceptors of the phytochrome family. Cyanobacteriochromes are divided into many subclasses with distinct spectral properties. Among them, putative phototaxis regulators PixJs of Anabaena sp. PCC 7120 and Thermosynechococcus elongatus BP-1 (denoted as AnPixJ and TePixJ, respectively) are representative of subclasses showing red-green-type and blue/green-type reversible photoconversion, respectively. Here, we determined crystal structures for the AnPixJ GAF domain in its red-absorbing 15 Z state (Pr) and the TePixJ GAF domain in its green-absorbing 15 E state (Pg). The overall structure of these proteins is similar to each other and also similar to known phytochromes. Critical differences found are as follows: (i) the chromophore of AnPixJ Pr is phycocyanobilin in a C5- Z ,syn/C10- Z ,syn/C15- Z ,anti configuration and that of TePixJ Pg is phycoviolobilin in a C10- Z ,syn/C15- E ,anti configuration, (ii) a side chain of the key aspartic acid is hydrogen bonded to the tetrapyrrole rings A, B and C in AnPixJ Pr and to the pyrrole ring D in TePixJ Pg, (iii) additional protein-chromophore interactions are provided by subclass-specific residues including tryptophan in AnPixJ and cysteine in TePixJ. Possible structural changes following the photoisomerization of the chromophore between C15- Z and C15- E are discussed based on the X-ray structures at 1.8 and 2.0-Å resolution, respectively, in two distinct configurations.
X-ray structure of a functional full-length dynein motor domain
The microtubule-based dynein motors drive many different processes in the cell, but the mechanism of dynein action is not well understood. Now the X-ray crystal structure of a full-length dynein motor domain with ADP is presented, giving insight into how dynein converts energy from ATP into movement. Dyneins are large microtubule-based motors that power a wide variety of cellular processes. Here we report a 4.5-Å X-ray crystallographic analysis of the entire functional motor domain of cytoplasmic dynein with ADP from Dictyostelium discoideum , which has revealed the detailed architecture of the functional units required for motor activity, including the ATP-hydrolyzing ring, the long coiled-coil microtubule-binding stalk and the force-generating rod-like linker. We discovered a Y-shaped protrusion composed of two long coiled coils—the stalk and the newly identified 'strut'. This structure supports our model in which the strut coiled coil actively contributes to communication between the primary ATPase site in the ring and the microtubule-binding site at the tip of the stalk coiled coil. Our work also provides insight into how the two motor domains are arranged and how they interact with each other in a functional dimer form of cytoplasmic dynein.
The 2.8 Å crystal structure of the dynein motor domain
Dyneins are microtubule-based AAA + motor complexes that power ciliary beating, cell division, cell migration and intracellular transport. Here we report the most complete structure obtained so far, to our knowledge, of the 380-kDa motor domain of Dictyostelium discoideum cytoplasmic dynein at 2.8 Å resolution; the data are reliable enough to discuss the structure and mechanism at the level of individual amino acid residues. Features that can be clearly visualized at this resolution include the coordination of ADP in each of four distinct nucleotide-binding sites in the ring-shaped AAA + ATPase unit, a newly identified interaction interface between the ring and mechanical linker, and junctional structures between the ring and microtubule-binding stalk, all of which should be critical for the mechanism of dynein motility. We also identify a long-range allosteric communication pathway between the primary ATPase and the microtubule-binding sites. Our work provides a framework for understanding the mechanism of dynein-based motility. The crystal structure of the entire motor domain of cytoplasmic dynein at the highest resolution so far is presented, giving insights into the communication between the different subdomains of the motor. The motive power for dynein The cytoskeletal motor proteins known as dyneins power a range of biological processes, including ciliary beating, cell division and intracellular trafficking. Dynein dysfunction has been implicated in several human diseases, including primary ciliary dyskinesia and neurodegenerative disorders. Here, Kon et al . present the crystal structure of the entire motor domain of cytoplasmic dynein at the highest resolution yet. The structure provides insights into the communication between different subdomains of the motor, as well as how dynein harnesses the unique architecture to generate force and movements as it 'walks' along microtubule filaments.
LcaR: a regulatory switch from Pseudomonas aeruginosa for bioengineering alkane degrading bacteria
Application of genetically engineered bacterial strains for biodegradation of hydrocarbons is a sustainable solution for treating pollutants as well as in industrial applications. However, the process of bioengineering should be carefully carried out to optimize the output. Investigation of regulatory genes for bioengineering is essential for developing synthetic circuits for effective biocatalysts. Here we focus on LcaR, a putative transcriptional regulator affecting the expression of alkB2 and lcaR operon that has a high potential to become a tool in designing such pathways. Four LcaR dimers bind specifically to the upstream regulatory region where divergent promoters of alkB2 and lcaR genes are located with high affinity at a Kd of 0.94 ± 0.17 nM and a Hill coefficient is 1.7 ± 0.3 demonstrating cooperativity in the association. Ligand binding alters the conformation of LcaR, which releases the regulator from its cognate DNA. Tetradecanal and hexadecanal act as natural ligands of LcaR with an IC50 values of 3.96 ± 0.59 µg/ml and 0.68 ± 0.21 µg/ml, respectively. The structure and function of transcription factors homologous to LcaR have not been characterized to date. This study provides insight into regulatory mechanisms of alkane degradation with a direction towards potential applications in bioengineering for bioremediation and industrial applications.
The unique allosteric property of crocodilian haemoglobin elucidated by cryo-EM
The principal effect controlling the oxygen affinity of vertebrate haemoglobins (Hbs) is the allosteric switch between R and T forms with relatively high and low oxygen affinity respectively. Uniquely among jawed vertebrates, crocodilians possess Hb that shows a profound drop in oxygen affinity in the presence of bicarbonate ions. This allows them to stay underwater for extended periods by consuming almost all the oxygen present in the blood-stream, as metabolism releases carbon dioxide, whose conversion to bicarbonate and hydrogen ions is catalysed by carbonic anhydrase. Despite the apparent universal utility of bicarbonate as an allosteric regulator of Hb, this property evolved only in crocodilians. We report here the molecular structures of both human and a crocodilian Hb in the deoxy and liganded states, solved by cryo-electron microscopy. We reveal the precise interactions between two bicarbonate ions and the crocodilian protein at symmetry-related sites found only in the T state. No other known effector of vertebrate Hbs binds anywhere near these sites. Crocodilians are ambush predators that possess haemoglobin with an allosteric switch between R (high oxygen affinity) and T (low oxygen affinity) forms strongly controlled by bicarbonate ions, a unique evolutionary feature that helps the animal to stay underwater for extended periods of time.
Structure of the Cytochrome b₆f Complex of Oxygenic Photosynthesis: Tuning the Cavity
The cytochrome b6f complex provides the electronic connection between the photosystem I and photosystem II reaction centers of oxygenic photosynthesis and generates a transmembrane electrochemical proton gradient for adenosine triphosphate synthesis. A 3.0 angstrom crystal structure of the dimeric b6f complex from the thermophilic cyanobacterium Mastigocladus laminosus reveals a large quinone exchange cavity, stabilized by lipid, in which plastoquinone, a quinone-analog inhibitor, and a novel heme are bound. The core of the b6f complex is similar to the analogous respiratory cytochrome bc1complex, but the domain arrangement outside the core and the complement of prosthetic groups are strikingly different. The motion of the Rieske iron-sulfur protein extrinsic domain, essential for electron transfer, must also be different in the b6f complex.
Structural basis for the isotype-specific interactions of ferredoxin and ferredoxin: NADP+ oxidoreductase: an evolutionary switch between photosynthetic and heterotrophic assimilation
In higher plants, ferredoxin (Fd) and ferredoxin-NADP + reductase (FNR) are each present as distinct isoproteins of photosynthetic type (leaf type) and non-photosynthetic type (root type). Root-type Fd and FNR are considered to facilitate the electron transfer from NADPH to Fd in the direction opposite to that occurring in the photosynthetic processes. We previously reported the crystal structure of the electron transfer complex between maize leaf FNR and Fd (leaf FNR:Fd complex), providing insights into the molecular interactions of the two proteins. Here we show the 2.49 Å crystal structure of the maize root FNR:Fd complex, which reveals that the orientation of FNR and Fd remarkably varies from that of the leaf FNR:Fd complex, giving a structural basis for reversing the redox path. Root FNR was previously shown to interact preferentially with root Fd over leaf Fd, while leaf FNR retains similar affinity for these two types of Fds. The structural basis for such differential interaction was investigated using site-directed mutagenesis of the isotype-specific amino acid residues on the interface of Fd and FNR, based on the crystal structures of the FNR:Fd complexes from maize leaves and roots. Kinetic and physical binding analyses of the resulting mutants lead to the conclusion that the rearrangement of the charged amino acid residues on the Fd-binding surface of FNR confers isotype-specific interaction with Fd, which brings about the evolutional switch between photosynthetic and heterotrophic redox cascades.
Iron-sulphur protein catalysed 4+2 cycloadditions in natural product biosynthesis
To the best of our knowledge, enzymes that catalyse intramolecular Diels-Alder ([4+2] cycloaddition) reactions are frequently reported in natural product biosynthesis; however, no native enzymes utilising Lewis acid catalysis have been reported. Verticilactam is a representative member of polycyclic macrolactams, presumably produced by spontaneous cycloaddition. We report that the intramolecular [4+2] cycloadditions can be significantly accelerated by ferredoxins (Fds), a class of small iron-sulphur (Fe-S) proteins. Through iron atom substitution by Lewis acidic gallium (Ga) iron and computational calculations, we confirm that the ubiquitous Fe-S cluster efficiently functions as Lewis acid to accelerate the tandem [4+2] cycloaddition and Michael addition reactions by lowering free energy barriers. Our work highlights Nature’s ingenious strategy to generate complex molecule structures using the ubiquitous Fe-S protein. Furthermore, our study sheds light on the future design of Fd as a versatile Lewis acid catalyst for [4+2] cycloaddition reactions. Native enzymes using Lewis acid catalysis in intramolecular [4+2] cycloaddition remain unreported. Herein, the authors report the ferredoxins catalyzed [4+2] cycloaddition in polycyclic macrolactam verticilactam biosynthesis using a transition-metal center.