Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
107
result(s) for
"Kurz, Werner A."
Sort by:
The enduring world forest carbon sink
by
Lerink, Bas
,
Keith, Heather
,
Ito, Akihiko
in
Balance studies
,
Carbon dioxide
,
Carbon Dioxide - analysis
2024
The uptake of carbon dioxide (CO
2
) by terrestrial ecosystems is critical for moderating climate change
1
. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO
2
uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr
−1
in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr
−1
in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (−36 ± 6%) and tropical intact (−31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased
2
, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr
−1
in 1990–2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr
−1
in 1990–2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes
1
. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices
1
,
3
.
Data from boreal, temperate and tropical forests over the past three decades reveal that the global forest carbon sink has remained steady during that time, despite considerable regional variation.
Journal Article
A Large and Persistent Carbon Sink in the World's Forests
by
Canadell, Josep G.
,
Sitch, Stephen
,
Fang, Jingyun
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Anthropogenic factors
2011
The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year -1 ) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year -1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year -1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year -1 . Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year -1 , with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.
Journal Article
Spatially Continuous Mapping of Forest Canopy Height in Canada by Combining GEDI and ICESat-2 with PALSAR and Sentinel
2022
Continuous large-scale mapping of forest canopy height is crucial for estimating and reporting forest carbon content, analyzing forest degradation and restoration, or to model ecosystem variables such as aboveground biomass. Over the last years, the spaceborne Light Detection and Ranging (LiDAR) sensor specifically designed to acquire forest structure information, Global Ecosystem Dynamics Investigation (GEDI), has been used to extract forest canopy height information over large areas. Yet, GEDI has no spatial coverage for most forested areas in Canada and other high latitude regions. On the other hand, the spaceborne LiDAR called Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) provides a global coverage but was not specially developed to study forested ecosystems. Nonetheless, both spaceborne LiDAR sensors obtain point-based information, making spatially continuous forest canopy height estimation very challenging. This study compared the performance of both spaceborne LiDAR, GEDI and ICESat-2, combined with ALOS-2/PALSAR-2 and Sentinel-1 and -2 data to produce continuous canopy height maps in Canada for the year 2020. A set-aside dataset and airborne LiDAR (ALS) from a national LiDAR campaign were used for accuracy assessment. Both maps overestimated canopy height in relation to ALS data, but GEDI had a better performance than ICESat-2 with a mean difference (MD) of 0.9 m and 2.9 m, and a root mean square error (RMSE) of 4.2 m and 5.2 m, respectively. However, as both GEDI and ALS have no coverage in most of the hemi-boreal forests, ICESat-2 captures the tall canopy heights expected for these forests better than GEDI. PALSAR-2 HV polarization was the most important covariate to predict canopy height, showing the great potential of L-band in comparison to C-band from Sentinel-1 or optical data from Sentinel-2. The approach proposed here can be used operationally to produce annual canopy height maps for areas that lack GEDI and ICESat-2 coverage.
Journal Article
Dynamics of dead wood decay in Swiss forests
by
Hararuk, Oleksandra
,
Didion, Markus
,
Kurz, Werner A.
in
Anthropogenic factors
,
Biomedical and Life Sciences
,
Carbon
2020
Background
Forests are an important component of the global carbon (C) cycle and can be net sources or sinks of CO
2
, thus mitigating or exacerbating the effects of anthropogenic greenhouse gas emissions. While forest productivity is often inferred from national-scale yield tables or from satellite products, forest C emissions resulting from dead organic matter decay are usually simulated, therefore it is important to ensure the accuracy and reliability of a model used to simulate organic matter decay at an appropriate scale. National Forest Inventories (NFIs) provide a record of carbon pools in ecosystem components, and these measurements are essential for evaluating rates and controls of C dynamics in forest ecosystems. In this study we combine the observations from the Swiss NFIs and machine learning techniques to quantify the decay rates of the standing snags and downed logs and identify the main controls of dead wood decay.
Results
We found that wood decay rate was affected by tree species, temperature, and precipitation. Dead wood originating from
Fagus sylvatica
decayed the fastest, with the residence times ranging from 27 to 54 years at the warmest and coldest Swiss sites, respectively. Hardwoods at wetter sites tended to decompose faster compared to hardwoods at drier sites, with residence times 45–92 and 62–95 years for the wetter and drier sites, respectively. Dead wood originating from softwood species had the longest residence times ranging from 58 to 191 years at wetter sites and from 78 to 286 years at drier sites.
Conclusions
This study illustrates how long-term dead wood observations collected and remeasured during several NFI campaigns can be used to estimate dead wood decay parameters, as well as gain understanding about controls of dead wood dynamics. The wood decay parameters quantified in this study can be used in carbon budget models to simulate the decay dynamics of dead wood, however more measurements (e.g. of soil C dynamics at the same plots) are needed to estimate what fraction of dead wood is converted to CO
2
, and what fraction is incorporated into soil.
Journal Article
Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks
by
Cescatti, Alessandro
,
Dentener, Frank
,
Kato, Etsushi
in
Anthropogenic factors
,
Carbon dioxide
,
Carbon footprint
2018
Achieving the long-term temperature goal of the Paris Agreement requires forest-based mitigation. Collective progress towards this goal will be assessed by the Paris Agreement’s Global stocktake. At present, there is a discrepancy of about 4 GtCO2 yr−1 in global anthropogenic net land-use emissions between global models (reflected in IPCC assessment reports) and aggregated national GHG inventories (under the UNFCCC). We show that a substantial part of this discrepancy (about 3.2 GtCO2 yr−1) can be explained by conceptual differences in anthropogenic forest sink estimation, related to the representation of environmental change impacts and the areas considered as managed. For a more credible tracking of collective progress under the Global stocktake, these conceptual differences between models and inventories need to be reconciled. We implement a new method of disaggregation of global land model results that allows greater comparability with GHG inventories. This provides a deeper understanding of model–inventory differences, allowing more transparent analysis of forest-based mitigation and facilitating a more accurate Global stocktake.
Journal Article
Under what circumstances can the forest sector contribute to 2050 climate change mitigation targets? A study from forest ecosystems to landfill methane emissions for the province of Quebec, Canada
2023
Meeting climate change mitigation targets by 2050, as outlined in international pledges, involves determining optimal strategies for forest management, wood supply, the substitution of greenhouse gas‐intensive materials and energy sources, and wood product disposal. Our study quantified the cumulative mitigation potential by 2050 of the forest sector in the province of Quebec, Canada, using several alternative strategies and assessed under what circumstances the sector could contribute to the targets. We used the Carbon Budget Model of the Canadian Forest Sector to project ecosystems emissions and sequestration of seven alternative and one baseline (business‐as‐usual [BaU]) forest management scenarios over the 2018–2050 period. Three baskets of wood products were used in a Harvested Wood Products model to predict wood product emissions. The mitigation potential was determined by comparing the cumulative CO2e budget of each alternative scenario to the BaU. The proportion of methane emissions from landfills (RCH4%) and the required displacement factor (RDF) to achieve mitigation benefits were assessed both independently and jointly. The fastest and most efficient way to improve mitigation outcomes of the forest sector of Quebec is to reduce end‐of‐life methane emissions from wood products. By reducing methane emissions, the RDF for achieving mitigation benefits through intensification strategies can be reduced from 1.2–2.3 to 0–0.9 tC/tC, thus reaching the current provincial mean DF threshold (0.9). Both a reduction and an increase in the harvested volume have the potential to provide mitigation benefits with adequate RCH4% and RDF. Increased carbon sequestration in ecosystems, innovations in long‐lived wood products, and optimal substitution in markets offer potential avenues for the forest sector to contribute to mitigation benefits but are subject to significant uncertainties. Methane emission reduction at the end of wood product service life is emerging as a valuable approach to enhance mitigation benefits of the forest sector. We determined the Quebec forest sector's carbon mitigation potential using alternative strategies (forest ecosystems/product decay/substitution). We estimated the displacement factors that are required for wood products by 2050. We estimated the landfill CH4 emission reductions that must be achieved by 2050. Conservation alternatives increase carbon sinks by 2050, and intensification alternatives increase carbon sources by 2050. With improved methane management and optimal substitution, both conservation and intensification scenarios could provide mitigation benefits. Quebec's forests sector can contribute to enhanced climate mitigation benefits if sustainable forest management, optimum use of wood, and improved methane management of landfills are achieved.
Journal Article
Climate, economic, and environmental impacts of producing wood for bioenergy
2018
Increasing combustion of woody biomass for electricity has raised concerns and produced conflicting statements about impacts on atmospheric greenhouse gas (GHG) concentrations, climate, and other forest values such as timber supply and biodiversity. The purposes of this concise review of current literature are to (1) examine impacts on net GHG emissions and climate from increasing bioenergy production from forests and exporting wood pellets to Europe from North America, (2) develop a set of science-based recommendations about the circumstances that would result in GHG reductions or increases in the atmosphere, and (3) identify economic and environmental impacts of increasing bioenergy use of forests. We find that increasing bioenergy production and pellet exports often increase net emissions of GHGs for decades or longer, depending on source of feedstock and its alternate fate, time horizon of analysis, energy emissions associated with the supply chain and fuel substitution, and impacts on carbon cycling of forest ecosystems. Alternative uses of roundwood often offer larger reductions in GHGs, in particular long-lived wood products that store carbon for longer periods of time and can achieve greater substitution benefits than bioenergy. Other effects of using wood for bioenergy may be considerable including induced land-use change, changes in supplies of wood and other materials for construction, albedo and non-radiative effects of land-cover change on climate, and long-term impacts on soil productivity. Changes in biodiversity and other ecosystem attributes may be strongly affected by increasing biofuel production, depending on source of material and the projected scale of biofuel production increases.
Journal Article
Science-based approach for credible accounting of mitigation in managed forests
2018
BackgroundThe credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013–2020) was accounting mitigation as deviation from a projected (forward-looking) “forest reference level”, which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model.ResultsUsing EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013–2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110–120 Mt CO2/year (capped at 70–80 Mt CO2/year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000–2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000–2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests.ConclusionsOur science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
Journal Article
Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain
by
Neilson, Eric T
,
Rampley, Gregory J
,
Kurz, Werner A
in
biogeochemical cycles
,
Biological Sciences
,
Boreal forests
2008
A large carbon sink in northern land surfaces inferred from global carbon cycle inversion models led to concerns during Kyoto Protocol negotiations that countries might be able to avoid efforts to reduce fossil fuel emissions by claiming large sinks in their managed forests. The greenhouse gas balance of Canada's managed forest is strongly affected by naturally occurring fire with high interannual variability in the area burned and by cyclical insect outbreaks. Taking these stochastic future disturbances into account, we used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to project that the managed forests of Canada could be a source of between 30 and 245 Mt CO₂e yr⁻¹ during the first Kyoto Protocol commitment period (2008-2012). The recent transition from sink to source is the result of large insect outbreaks. The wide range in the predicted greenhouse gas balance (215 Mt CO₂e yr⁻¹) is equivalent to nearly 30% of Canada's emissions in 2005. The increasing impact of natural disturbances, the two major insect outbreaks, and the Kyoto Protocol accounting rules all contributed to Canada's decision not to elect forest management. In Canada, future efforts to influence the carbon balance through forest management could be overwhelmed by natural disturbances. Similar circumstances may arise elsewhere if global change increases natural disturbance rates. Future climate mitigation agreements that do not account for and protect against the impacts of natural disturbances, for example, by accounting for forest management benefits relative to baselines, will fail to encourage changes in forest management aimed at mitigating climate change.
Journal Article
Carbon sequestration and emission mitigation potential of afforestation and reforestation of unproductive territories
by
Ménard, Isabelle
,
Kurz, Werner A
,
Boucher, Jean-François
in
Afforestation
,
Agricultural land
,
Carbon dioxide
2023
Afforestation and reforestation can contribute to the mitigation of climate change by increasing forested areas that can actively sequester carbon dioxide from the atmosphere through photosynthesis. The purpose of this study was to assess the potential for carbon sequestration in the ecosystem and in harvested wood products, and associated greenhouse gas (GHG) emission mitigation, following the application of afforestation/reforestation strategies on unproductive lands in the Province of Quebec over an 80-year long period (2021–2101), using the Carbon Budget Model of the Canadian Forester Sector 3. Afforestation/reforestation scenarios without harvesting and scenarios based on establishment of fast-growing species such as hybrid poplar showed the greatest short-term (2020–2040) carbon sequestration potential. Over the 80-year simulation period, plantations without harvesting generated a greater potential for carbon sequestration in ecosystems; after each harvesting event, several decades were necessary to regain any ecosystem carbon loss, which could be compensated only if a proportion of the harvested wood is converted to long-lived wood products, with high substitution effects in other sectors. In the northern boreal zone of Quebec, significant mitigation potential can be expected from the afforestation of open woodlands and poorly regenerated burns, both with or without harvesting. In the southern zone, the need for better data on vegetation succession and carbon accumulation on abandoned farmlands in the absence of plantations was highlighted by this study. This study increases the understanding of carbon sequestration by plantations, and their role as a mitigation strategy to contribute to national GHG emission reduction targets and net-zero carbon objectives.
Journal Article