Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Kutu, Funso R."
Sort by:
Rhus coriaria L. (Sumac), a Versatile and Resourceful Food Spice with Cornucopia of Polyphenols
In recent years, utilization of Rhus coriaria L. (sumac) is upgrading not only in their culinary use and human nutrition, but also in the pharmaceutical industry, food industry and veterinary practices. This is driven by accumulating evidence that support the ethnobotanical use of this plant; in particular, advanced knowledge of the content of nutritional, medicinal and techno-functional bioactive ingredients. Herein, we discuss polyphenolic compounds as the main bioactive ingredients in Rhus coriaria L., which contribute mainly to the significance and utility of this spice. Most of the antioxidant potential and therapeutic roles of sumac are increasingly attributed to its constituent tannins, flavonoids, and phenolic acids. Hydroxyphenyl pyranoanthocyanins and other anthocynins are responsible for the highly desired red pigments accounting for the strong pigmentation capacity and colorant ability of sumac. Certain polyphenols and the essential oil components are responsible for the peculiar flavor and antimicrobial activity of sumac. Tannin-rich sumac extracts and isolates are known to enhance the food quality and the oxidative stability of animal products such as meat and milk. In conclusion, polyphenol-rich sumac extracts and its bioactive ingredients could be exploited towards developing novel food products which do not only address the current consumers’ interests regarding organoleptic and nutritional value of food, but also meet the growing need for ‘clean label’ as well as value addition with respect to antioxidant capacity, disease prevention, and health promotion in humans.
Nutritional Quality and Popability of Popcorn (Zea mays L. var. everta) in Response to Compost and NPK 20-7-3 Application under Dryland Condition of South Africa
The dietary value of popcorn, an important snack, depends on its proximate and nutritional constituents, while the economic worth is based on popability and expansion traits of the kernels. There is paucity of information on how soil fertility influences or relates with popping potentials as well as quality of popcorn kernel in semi-arid region. Therefore, the proximate composition and popping parameters of popcorn in response to organic and inorganic fertilizers were investigated. The field trial was conducted in 2017-2019, and it comprised five amendment rates including 90 and 180 kg ha-1 NPK fertilizer and 4 and 8 t ha-1 compost and unamended treatment as the control. The trial was arranged in randomized complete block design in triplicate. Data on kernel yield, biomass, and harvest index were evaluated. Kernels were analysed for proximate composition and popping indices using standard procedures. Across the two seasons, mean protein (8.1%) and fibre (10.2%) contents were highest in kernels from plots fertilized with NPK at 180 kg ha-1, while grains from plots fertilized with 8 t ha-1 compost had the highest moisture (19.3%) and starch (50.1%) contents. The highest kernel expansion of 54.18 cm3 g-1 and 77.6% popped kernels were obtained in plots fertilized with 4 t ha-1 compost. Most of the kernels (61%) were small-sized caryopsis. Popability is significantly associated with volume expansion (r=0.696). Proximate components and popability improved greatly in compost-augmented field relative to the unfertilized plots. Application of 4 or 8 t ha-1 sorted municipal solid waste compost to Luvisol enhanced growth and nutritional quality of popcorn. In view of promoting nutrient cycling towards improving soil fertility without compromising environmental health, compost is comparable and a good alternative to fossil-based mineral fertilizers.
Bioavailability and health risk assessment of potentially toxic elements in popcorn kernel from sandy loam Ferric Luvisol amended with municipal solid waste compost
Application of municipal solid waste compost (MSWC) to marginal soil enhances crop growth but could also serve as source of pollutants into agroecosystem. There is scanty report on bioavailability of potentially toxic element (PTE) and the health risk of consuming popcorn kernel harvested from field fertilized with MSWC. Field trial was carried out in 2017–2019 to evaluate bioavailability of PTEs in kernel of popcorn harvested from field fertilized with MSWC. The trial was conducted at the experimental field of North-West University, Mafikeng campus South Africa. The treatments comprised three rates of MSWC including 0 t/ha (unamended, control), 4 t/ha and 8 t/ha arranged in randomized complete block design and replicated four times. One seed of popcorn was sown at 20 × 70 cm spacing per hole of 3 cm depth in a 6 × 4.2 m plot size. Growth and yield data were collected at maturity. Ears were harvested at maturity and the kernels were dried to 12% moisture content. Air-dried kernels (50 g) samples were collected and analyzed for essential mineral nutrient and some heavy metal(loid)s using ICP-MS. Measured concentrations of these heavy metal(loid)s were then used to calculate the health risk for adults and children. The results showed that uptake concentration was in the order K+ > HPO42− > Mg+2 > Ca2+ > Fe2+ > Cr6+ > Zn2+ > Mn2+  > Cu2+(mg/kg). Uptake concentration of metalloids: Al and Pd was significantly higher in the unamended. Bioavailability of PTE was highest in unamended plots. The average daily intake of the PTEs was within the recommended permissible level. The risk index value for oral pathway was < 1 for both adult and children population. Amending Ferric Luvisol with 80 t/ha MSWC enhanced popcorn growth and, concentration of accumulated PTEs in kernels at this rate, cannot pose health risk to both adult and children population.
IRhus coriaria/I L. , a Versatile and Resourceful Food Spice with Cornucopia of Polyphenols
In recent years, utilization of Rhus coriaria L. (sumac) is upgrading not only in their culinary use and human nutrition, but also in the pharmaceutical industry, food industry and veterinary practices. This is driven by accumulating evidence that support the ethnobotanical use of this plant; in particular, advanced knowledge of the content of nutritional, medicinal and techno-functional bioactive ingredients. Herein, we discuss polyphenolic compounds as the main bioactive ingredients in Rhus coriaria L., which contribute mainly to the significance and utility of this spice. Most of the antioxidant potential and therapeutic roles of sumac are increasingly attributed to its constituent tannins, flavonoids, and phenolic acids. Hydroxyphenyl pyranoanthocyanins and other anthocynins are responsible for the highly desired red pigments accounting for the strong pigmentation capacity and colorant ability of sumac. Certain polyphenols and the essential oil components are responsible for the peculiar flavor and antimicrobial activity of sumac. Tannin-rich sumac extracts and isolates are known to enhance the food quality and the oxidative stability of animal products such as meat and milk. In conclusion, polyphenol-rich sumac extracts and its bioactive ingredients could be exploited towards developing novel food products which do not only address the current consumers’ interests regarding organoleptic and nutritional value of food, but also meet the growing need for ‘clean label’ as well as value addition with respect to antioxidant capacity, disease prevention, and health promotion in humans.
The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system: a review
Food safety is a significant challenge worldwide, from plantation to cultivation, especially for perishable products such as tomatoes. New eco-friendly strategies are needed, and beneficial microorganisms might be a sustainable solution. This study demonstrates bacteria activity in the tomato plant rhizosphere. Further, it investigates the rhizobacteria’s structure, function, and diversity in soil. Rhizobacteria that promote the growth and development of tomato plants are referred to as plant growth-promoting bacteria (PGPR). They form a series of associations with plants and other organisms in the soil through a mutualistic relationship where both parties benefit from living together. It implies the antagonistic activities of the rhizobacteria to deter pathogens from invading tomato plants through their roots. Some PGPR are regarded as biological control agents that hinder the development of spoilage organisms and can act as an alternative for agricultural chemicals that may be detrimental to the health of humans, animals, and some of the beneficial microbes in the rhizosphere soil. These bacteria also help tomato plants acquire essential nutrients like potassium (K), magnesium (Mg), phosphorus (P), and nitrogen (N). Some rhizobacteria may offer a solution to low tomato production and help tackle food insecurity and farming problems. In this review, an overview of soil-inhabiting rhizobacteria focused on improving the sustainable production of Solanum lycopersicum .
Harnessing the Rhizosphere Soil Microbiome of Organically Amended Soil for Plant Productivity
Soil degradation remains an ongoing process that is exacerbated by the effects of climate change. Consequently, these processes decrease soil organic matter and nutrient contents, soil biological functions, and plant productivity. The addition of organic amendments (OAs) to the soil is a widespread practice to enhance soil quality and the health of agricultural soils. One of the most significant microbial hotspots controlling the processes, dynamics, and cycling of nutrients, carbon and water in terrestrial ecosystems is the rhizosphere. Understanding the continuing transformations of OAs and the distribution of different factors (C, nutrients, and microbial activities) across and along roots is crucial in the rhizosphere. The application of OAs to soil increases soil organic matter and nutrients, water holding capacity, improves soil structure and stimulates soil microbial activity and biomass. This review evaluates the role of the rhizosphere microbial community in organically amended soils for promoting plant growth and health. The diversity of the rhizosphere microbiome and the mechanisms used in plant protection are discussed.