Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"Kuznetsov, Denis V."
Sort by:
Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review
by
Zakharova, Olga V.
,
Kuznetsov, Denis V.
,
Vasyukova, Inna A.
in
2D materials
,
Antibacterial agents
,
Antiinfectives and antibacterials
2022
MXenes are a family of two-dimensional (2D) composite materials based on transition metal carbides, nitrides and carbonitrides that have been attracting attention since 2011. Combination of electrical and mechanical properties with hydrophilicity makes them promising materials for biomedical applications. This review briefly discusses methods for the synthesis of MXenes, their potential applications in medicine, ranging from sensors and antibacterial agents to targeted drug delivery, cancer photo/chemotherapy, tissue engineering, bioimaging, and environmental applications such as sensors and adsorbents. We focus on in vitro and in vivo toxicity and possible mechanisms. We discuss the toxicity analogies of MXenes and other 2D materials such as graphene, mentioning the greater biocompatibility of MXenes. We identify existing barriers that hinder the formation of objective knowledge about the toxicity of MXenes. The most important of these barriers are the differences in the methods of synthesis of MXenes, their composition and structure, including the level of oxidation, the number of layers and flake size; functionalization, test concentrations, duration of exposure, and individual characteristics of biological test objects Finally, we discuss key areas for further research that need to involve new methods of nanotoxicology, including predictive computational methods. Such studies will bring closer the prospect of widespread industrial production and safe use of MXene-based products.
Journal Article
Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells
by
Pescetelli, S
,
A Di Carlo
,
Rossi, D
in
Density functional theory
,
Dipoles
,
Electron transport
2019
To improve the efficiency of perovskite solar cells, careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (MXene Ti3C2Tx) with various termination groups (Tx) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and density functional theory calculations show that the addition of Ti3C2Tx to halide perovskite and TiO2 layers permits the tuning of the materials’ WFs without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2Tx at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified perovskite solar cells, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without MXene.
Journal Article
Metallurgical Waste for Sustainable Agriculture: Converter Slag and Blast-Furnace Sludge Increase Oat Yield in Acidic Soils
by
Strekalova, Nataliya S.
,
Volokhov, Sergey V.
,
Burmistrov, Igor N.
in
Accumulation
,
Acidic soils
,
Acidification
2024
The study is the first to examine the combined use of blast-furnace sludge as a source of microelements and converter slag as a soil-deoxidizing agent in oat (Avena sativa L.) cultivation in sod-podzolic soils. It has been established that blast-furnace sludge is a highly dispersed waste, which contains about 50% iron, 7% zinc, and a small amount of calcium, silicon, magnesium, aluminum, and sulfur. Hazardous components such as lead, arsenic, etc., are not detected. Converter slag comprises porous granules up to 3 mm in size, consisting mainly of calcium compounds (CaO, Ca(CO)3, CaSiO3, CaFe2O4) and a small amount of Mn, Al, and Mg trace elements. In a laboratory experiment, blast-furnace sludge increased the germination of oats by 5–10%, regardless of the addition of a deoxidizer (slag), but at the same time suppressed the growth of stem length by a maximum of 18% at 1 g∙kg−1. The addition of slag raised substrate pH and increased the index by 8% at a sludge concentration of 0.1 g∙kg−1. Root length in deoxidizer-free variants increased by 50–60% and with the addition of slag by 27–47%. Root dry mass also increased under the addition of sludge by 85–98%; however, the addition of slag reduced the indicator to the control level. In a field experiment with the combined application of waste, an increase in yield by more than 30% was shown. When soil was treated with slag and sludge, the height of plants increased by an average of 18%. It should be noted that the introduction of waste did not affect the quality of the grain. The use of slag increased the lead content in the soil, which is probably due to the sorption properties of calcium compounds in the slag, since lead was not found in the analyzed waste. Presumably, lead is sorbed by slag from the lower soil horizons, concentrating and immobilizing it in the upper layer. This version is supported by the absence of lead accumulation in straw and oat grain. The zinc-containing sludge increased the content of this element by 33% in the soil, as well as by 6% in straw and by 14% in grain. Thus, we found that the studied metallurgical wastes can be used as nutrients for agriculture, both individually and jointly. Overall, the proposed approach will contribute both to reducing the amount of accumulated waste and to improving the efficiency and sustainability of agricultural production and CO2 sequestration. However, the features of the accumulation of heavy metals in soil and plants under the influence of the analyzed types of waste require more in-depth study, including within the framework of long-term field experiments.
Journal Article
Author Correction: Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells
2019
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Journal Article
Highly Dispersed Blast-Furnace Sludge as a New Micronutrient Fertilizer: Promising Results on Rapeseed
by
Zakharova, Olga V.
,
Kuznetsov, Denis V.
,
Grodetskaya, Tatiana A.
in
Accumulation
,
Agriculture
,
agronomy
2022
Due to the growing population of Earth, the problem of providing food comes to the fore. Therefore, the search for new, economically available sources of trace elements for crop production is relevant. One of these potential sources is blast-furnace sludge: highly dispersed metallurgical waste, the industrial processing of which is difficult due to its high zinc content. We studied the effect of blast-furnace sludge on rapeseed plants in laboratory, greenhouse, and field experiments and also assessed the accumulation of sludge components in plant organs. The studied sludge sample consisted of micron and submicron particles containing compounds of iron, silicon, aluminum, zinc, calcium, and sulfur. Used concentrations: laboratory—0.01, 0.1, 1%, 10, and 100 g L−1; greenhouse—0.01, 0.1, 1, 10, and 100 g kg−1; field—0.5, 2, and 4 t ha−1. During a laboratory experiment, a decrease in the germination of rapeseed seeds exposed to 0.01, 0.1, 10, and 100 g L−1 waste was observed, but 1 g L−1 promoted the increase of this indicator by 7% regarding control (0 g L−1). While inhibiting seed germination, the sludge had a beneficial effect on the vegetative performance of plants. Reverse effects were noted in the greenhouse experiment as an increase in seed germination (introduction of 1 g kg−1 of sludge to the substrate caused maximum stimulation) and a decrease in rapeseed morphometric parameters were observed. However, at a concentration of 10 g kg−1, the root mass increased by 43% and the stem mass by 63%. In the same group, the highest content of chlorophylls was noted. The number of pods in all experimental groups of plants was less than in control (0 g kg−1) plants, but at the same time, in the variants of 0.01 and 1 g kg−1, the weight of seeds was noticeably increased, by 15.6 and 50%, respectively. Under the conditions of the field experiment, the sludge had a positive effect on the indicators of biological and economic productivity. Thus, exposure to 0.5 and 2 t ha−1 of sludge significantly increased the dry matter and leaf area. The highest values of photosynthetic capacity were recorded at a dose of 2 t ha−1. The maximum increase in yield was ensured by the introduction of sludge at a concentration of 0.5 and 2 t ha−1. The sludge dose of 4 t ha−1, which was also used, either had no effect or suppressed the development of the analyzed traits. The study of the accumulation of zinc and iron in the organs of plants showed the absence of a pronounced dose-dependent accumulation of zinc in the organs of rapeseed, while for iron, an increase in the content of the element in the organs of plants associated with an increase in the concentration of sludge in the soil was recorded. Our results demonstrate the promise of further research and development of methods for the agricultural use of highly dispersed sludge from wet gas cleaning of blast furnace production.
Journal Article
Medium-Dependent Antibacterial Properties and Bacterial Filtration Ability of Reduced Graphene Oxide
by
Kolesnikov, Evgeny
,
Lapanje, Aleš
,
Zakharova, Olga
in
antibacterial properties
,
Bacteria
,
Biofiltration
2019
Toxicity of reduced graphene oxide (rGO) has been a topic of multiple studies and was shown to depend on a variety of characteristics of rGO and biological objects of interest. In this paper, we demonstrate that when studying the same dispersions of rGO and fluorescent Escherichia coli (E. coli) bacteria, the outcome of nanotoxicity experiments also depends on the type of culture medium. We show that rGO inhibits the growth of bacteria in a nutrition medium but shows little effect on the behavior of E. coli in a physiological saline solution. The observed effects of rGO on E. coli in different media could be at least partially rationalized through the adsorption of bacteria and nutrients on the dispersed rGO sheets, which is likely mediated via hydrogen bonding. We also found that the interaction between rGO and E. coli is medium-dependent, and in physiological saline solutions they form stable flocculate structures that were not observed in nutrition media. Furthermore, the aggregation of rGO and E. coli in saline media was observed regardless of whether the bacteria were alive or dead. Filtration of the aggregate suspensions led to nearly complete removal of bacteria from filtered liquids, which highlights the potential of rGO for the filtration and separation of biological contaminants, regardless of whether they include live or dead microorganisms.
Journal Article
Nanotoxicity of ZrS3 Probed in a Bioluminescence Test on E. coli Bacteria: The Effect of Evolving H2S
by
Abourahma, Jehad
,
Gusev, Alexander A.
,
Zakharova, Olga V.
in
antibacterial properties
,
bioluminescence test
,
Communication
2020
Materials from a large family of transition metal trichalcogenides (TMTCs) attract considerable attention because of their potential applications in electronics, optoelectronics and energy storage, but information on their toxicity is lacking. In this study, we investigated the toxicity of ZrS3, a prominent TMTC material, toward photoluminescent E. coli bacteria in a bioluminescence test. We found that freshly prepared ZrS3 suspensions in physiological saline solution with concentrations as high as 1 g/L did not exhibit any toxic effects on the bacteria. However, ZrS3 suspensions that were stored for 24 h prior to the bioluminescence tests were very toxic to the bacteria and inhibited their emission, even at concentrations down to 0.001 g/L. We explain these observations by the aqueous hydrolysis of ZrS3, which resulted in the formation of ZrOx on the surface of ZrS3 particles and the release of toxic H2S. The formation of ZrOx was confirmed by the XPS analysis, while the characteristic H2S smell was noticeable for the 24 h suspensions. This study demonstrates that while ZrS3 appears to be intrinsically nontoxic to photoluminescent E. coli bacteria, it may exhibit high toxicity in aqueous media. The results of this study can likely be extended to other transition metal chalcogenides, as their toxicity in aqueous solutions may also increase over time due to hydrolysis and the formation of H2S. The results of this study also demonstrate that since many systems involving nanomaterials are unstable and evolve over time in various ways, their toxicity may evolve as well, which should be considered for relevant toxicity tests.
Journal Article
Graphene Oxide Nanosurface Reduces Apoptotic Death of HCT116 Colon Carcinoma Cells Induced by Zirconium Trisulfide Nanoribbons
by
Zakharova, Olga V.
,
Tatarskiy, Victor V.
,
Kuznetsov, Denis V.
in
Apoptosis
,
Biological activity
,
Cancer therapies
2023
Due to their chemical, mechanical, and optical properties, 2D ultrathin nanomaterials have significant potential in biomedicine. However, the cytotoxicity of such materials, including their mutual increase or decrease, is still not well understood. We studied the effects that graphene oxide (GO) nanolayers (with dimensions 0.1–3 μm and average individual flake thickness less than 1 nm) and ZrS3 nanoribbons (length more than 10 μm, width 0.4–3 μm, and thickness 50–120 nm) have on the viability, cell cycle, and cell death of HCT116 colon carcinoma cells. We found that ZrS3 exhibited strong cytotoxicity by causing apoptotic cell death, which was in contrast to GO. When adding GO to ZrS3, ZrS3 was significantly less toxic, which may be because GO inhibits the effects of cytotoxic hydrogen sulfide produced by ZrS3. Thus, using zirconium trisulfide nanoribbons as an example, we have demonstrated the ability of graphene oxide to reduce the cytotoxicity of another nanomaterial, which may be of practical importance in biomedicine, including the development of biocompatible nanocoatings for scaffolds, theranostic nanostructures, and others.
Journal Article
Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes
by
Gulchenko, Svyatoslav I.
,
Zakharova, Olga V.
,
Godymchuk, Anna Yu
in
Anti-Bacterial Agents - adverse effects
,
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
2015
Suspensions of Cu nanoparticles are promising for creating the new class of alternative antimicrobial products. In this study we examined copper nanoparticles of various sizes obtained by the method of wire electric explosion: nanopowder average size 50 nm (Cu 50) and 100 nm (Cu 100). The paper presents the complex study of the influence of physicochemical properties such as particle size and concentration of the freshly prepared and 24-hour suspensions of Cu nanoparticles in distilled water and physiological solution upon their toxicity to bacteria E. coli M-17. Ionic solution of Cu2+ and sodium dichloroisocyanurate was used for comparison study. It has been shown that decrease in the nanoparticle size leads to changes in the correlation between toxicity and concentration as toxicity peaks are observed at low concentrations (0.0001⋯0.01 mg/L). It has been observed that antibacterial properties of Cu 50 nanoparticle suspensions are ceased after 24-hour storage, while for Cu 100 suspensions no correlation between antibacterial properties and storage time has been noted. Cu 100 nanoparticle suspensions at 10 mg/L concentration display higher toxicity at substituting physiological solution for water than Cu 50 suspensions. Dependence of the toxicity on the mean particle aggregates size in suspension was not revealed.
Journal Article
The Room-Temperature Chemiresistive Properties of Potassium Titanate Whiskers versus Organic Vapors
by
Fedorov, Fedor
,
Sommer, Martin
,
Burmistrov, Igor
in
Acetone
,
Air temperature
,
Dimensional stability
2017
The development of portable gas-sensing units implies a special care of their power efficiency, which is often approached by operation at room temperature. This issue primarily appeals to a choice of suitable materials whose functional properties are sensitive toward gas vapors at these conditions. While the gas sensitivity is nowadays advanced by employing the materials at nano-dimensional domain, the room temperature operation might be targeted via the application of layered solid-state electrolytes, like titanates. Here, we report gas-sensitive properties of potassium titanate whiskers, which are placed over a multielectrode chip by drop casting from suspension to yield a matrix mono-layer of varied density. The material synthesis conditions are straightforward both to get stable single-crystalline quasi-one-dimensional whiskers with a great extent of potassium replacement and to favor the increase of specific surface area of the structures. The whisker layer is found to be sensitive towards volatile organic compounds (ethanol, isopropanol, acetone) in the mixture with air at room temperature. The vapor identification is obtained via processing the vector signal generated by sensor array of the multielectrode chip with the help of pattern recognition algorithms.
Journal Article