Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Kwaga, Jacob K. P."
Sort by:
Genetic relatedness of multidrug resistant Escherichia coli isolated from humans, chickens and poultry environments
Background Inappropriate use of antimicrobial agents in animal production has led to the development of antimicrobial resistance (AMR) in foodborne pathogens. Transmission of AMR foodborne pathogens from reservoirs, particularly chickens to the human population does occur. Recently, we reported that occupational exposure was a risk factor for multidrug-resistant (MDR) Escherichia coli (E. coli) among poultry-workers. Here we determined the prevalence and genetic relatedness among MDR E. coli isolated from poultry-workers, chickens, and poultry environments in Abuja, Nigeria. This study was conducted to address the gaps identified by the Nigerian AMR situation analysis. Methods We conducted a cross-sectional study among poultry-workers, chickens, and poultry farm/live bird market (LBM) environments. The isolates were tested phenotypically for their antimicrobial susceptibility profiles, genotypically characterized using whole-genome sequencing (WGS) and in silico multilocus sequence types (MLST). We conducted a phylogenetic single nucleotide polymorphism (SNPs) analysis to determine relatedness and clonality among the isolates. Results A total of 115 (26.8%) out of 429 samples were positive for E. coli. Of these, 110 isolates were viable for phenotypic and genotypic characterization. The selection comprised 47 (42.7%) isolates from poultry-workers, 36 (32.7%) from chickens, and 27 (24.5%) from poultry-farm or LBM environments. Overall, 101 (91.8%) of the isolates were MDR conferring resistance to at least three drug classes . High frequency of resistance was observed for tetracycline (n = 102; 92.7%), trimethoprim/sulfamethoxazole (n = 93; 84.5%), streptomycin (n = 87; 79.1%) and ampicillin (n = 88; 80%). Two plasmid-mediated colistin genes— mcr-1.1 harboured on IncX4 plasmids were detected in environmental isolates. The most prevalent sequence types (ST) were ST-155 (n = 8), ST-48 (n = 8) and ST-10 (n = 6). Two isolates of human and environmental sources with a SNPs difference of 6161 originating from the same farm shared a novel ST. The isolates had similar AMR genes and plasmid replicons. Conclusion MDR E.coli isolates were prevalent amongst poultry-workers, poultry, and the poultry farm/LBM environment. The emergence of MDR E. coli with novel ST in two isolates may be plasmid-mediated. Competent authorities should enforce AMR regulations to ensure prudent use of antimicrobials to limit the risk of transmission along the food chain.
Assessing the mechanisms of multi-drug resistant non-typhoidal Salmonella (NTS) serovars isolated from layer chicken farms in Nigeria
In Nigeria, there have been reports of widespread multiple antimicrobial resistance (AMR) amongst Salmonella isolated from poultry. To mitigate the impact of mortality associated with Salmonella on their farms, farmers resort to the use of antimicrobials without sound diagnostic advice. We conducted this study to describe the AMR patterns, mechanisms and genetic similarities within some Salmonella serovars isolated from different layer farms. We determine the AMR profiles of two hundred Salmonella isolates, selected based on frequency, serovar, and geographical and sample type distribution. We also assessed the mechanisms of multi-drug resistance for specific genetic determinants by using PCR protocols and gene sequence analysis. Pulsed-field gel electrophoresis (PFGE) was conducted on seven selected serovars to determine their genetic relatedness. Of 200 isolates, 97 (48.5%) revealed various AMR profiles, with the multiple antibiotic resistance (MAR) index ranging from 0.07-0.5. Resistance to ciprofloxacin was common in all the multi-drug resistant isolates, while all the isolates were susceptible to cefotaxime, ceftazidime, and meropenem. Genotypic characterization showed the presence of resistance genes as well as mutations in the nucleotide genes with subsequent amino acid substitutions. Fifteen isolates (43%) of S. Kentucky were indistinguishable, but were isolated from four different states in Nigeria (Ogun, n = 9; Kaduna, n = 6; Plateau, n = 3, and: Bauchi, n = 2). PFGE revealed 40 pulsotype patterns (Kentucky, n = 12; Larochelle, n = 9; Virchow, n = 5; Saintpaul, n = 4; Poona, n = 3; Isangi, n = 2, and; Nigeria, n = 2). This study recorded strictly related but diversely distributed Salmonella serovars with high AMR rates in poultry. We recommend strict regulation on antimicrobial use and regular monitoring of AMR trends among bacteria isolated from animals and humans to inform public policy.
Molecular identification and prevalence of trypanosomes in cattle distributed within the Jebba axis of the River Niger, Kwara state, Nigeria
Background Trypanosomiasis is a fatal disease that threatens the economy of at least 37 countries in sub-Saharan Africa, particularly with regard to livestock farming. In this study, we investigated the prevalence of trypanosome infection in cattle, and molecularly identified the species of trypanosomes in infected cattle and the spatial distribution of trypanosome-infected herds along the Jebba axis of the River Niger. Methods A randomized cross-sectional study was conducted along the Jebba axis of the River Niger by screening cattle from 36 herd clusters by nested PCR using ITS-1 generic primers. Data generated were analysed using the Chi-square test at a 95% confidence interval. Results Microscopic examination revealed three infected cattle out of 398 examined, representing 0.8% prevalence. Twelve animals (3.0%) were positive by PCR. Our results showed a decline in the packed cell volume of infected animals (24.7%). The infection rates were categorized as single infection in 11/12 (91.7%) and mixed infection in 1/12 (8.3%). Animals were most frequently infected by Trypanosoma congolense (50.0%), with T. congolense Savannah being the most prevalent subspecies (71.4%). Aside from the infection rate by age (10.0%) and relative distance of animals from the River Niger (56.2%), statistical differences in every other parameter tested were based on mere probabilistic chance. Spatial data showed that the disease was prevalent among herds located less than 3 km from the River Niger. Conclusions Six species of trypanosomes were identified in cattle herds along the Jebba axis of the River Niger, with T. congolense being the most prevalent. Age and relative distance of herds from the River Niger may be risk factors for trypanosome infection in cattle herds in this area. Graphical abstract
Cholera outbreak in some communities in North-East Nigeria, 2019: an unmatched case–control study
Background Cholera, a diarrheal disease caused by the bacterium Vibrio cholerae , transmitted through fecal contamination of water or food remains an ever-present risk in many countries, especially where water supply, sanitation, food safety, and hygiene are inadequate. A cholera outbreak was reported in Bauchi State, North-eastern Nigeria. We investigated the outbreak to determine the extent and assess risk factors associated with the outbreak. Methods We conducted a descriptive analysis of suspected cholera cases to determine the fatality rate (CFR), attack rate (AR), and trends/patterns of the outbreak. We also conducted a 1:2 unmatched case–control study to assess risk factors amongst 110 confirmed cases and 220 uninfected individuals (controls). We defined a suspected case as any person > 5 years with acute watery diarrhea with/without vomiting; a confirmed case as any suspected case in which there was laboratory isolation of Vibrio cholerae O1 or O139 from the stool while control was any uninfected individual with close contact (same household) with a confirmed case. Children under 5 were not included in the case definition however, samples from this age group were collected where such symptoms had occurred and line-listed separately. Data were collected with an interviewer-administered questionnaire and analyzed using Epi-info and Microsoft excel for frequencies, proportions, bivariate and multivariate analysis at a 95% confidence interval. Results A total of 9725 cases were line-listed with a CFR of 0.3% in the state. Dass LGA had the highest CFR (14.3%) while Bauchi LGA recorded the highest AR of 1,830 cases per 100,000 persons. Factors significantly associated with cholera infection were attending social gatherings (aOR = 2.04, 95% CI = 1.16–3.59) and drinking unsafe water (aOR = 1.74, 95% CI = 1.07–2.83). Conclusion Attending social gatherings and drinking unsafe water were risk factors for cholera infection. Public health actions included chlorination of wells and distribution of water guard (1% chlorine solution) bottles to households and public education on cholera prevention. We recommend the provision of safe drinking water by the government as well as improved sanitary and hygienic conditions for citizens of the state.
Detection and genetic characterisation of Toxoplasma gondii circulating in free-range chickens, pigs and seropositive pregnant women in Benue state, Nigeria
Toxoplasma gondii parasites present strong but geographically varied signatures of population structure. Populations sampled from Europe and North America have commonly been defined by over-representation of a small number of clonal types, in contrast to greater diversity in South America. The occurrence and extent of genetic diversity in African T . gondii populations remains understudied, undermining assessments of risk and transmission. The present study was designed to establish the occurrence, genotype and phylogeny of T . gondii in meat samples collected from livestock produced for human consumption (free-range chickens, n = 173; pigs, n = 211), comparing with T . gondii detected in blood samples collected from seropositive pregnant women (n = 91) in Benue state, Nigeria. The presence of T . gondii DNA was determined using a published nested polymerase chain reaction, targeting the 529 bp multicopy gene element. Samples with the highest parasite load (assessed using quantitative PCR) were selected for PCR-restriction fragment length polymorphism (PCR-RFLP) targeting the surface antigen 3 (SAG3), SAG2 (5’ and 3’), beta-tubulin (BTUB) and dense granule protein 6 (GRA6) loci, and the apicoplast genome (Apico). Toxoplasma gondii DNA was detected in all three of the populations sampled, presenting 30.6, 31.3 and 25.3% occurrence in free-range chickens, pigs and seropositive pregnant women, respectively. Quantitative-PCR indicated low parasite occurrence in most positive samples, limiting some further molecular analyses. PCR-RFLP results suggested that T . gondii circulating in the sampled populations presented with a type II genetic background, although all included a hybrid type I/II or II/III haplotype. Concatenation of aligned RFLP amplicon sequences revealed limited diversity with nine haplotypes and little indication of host species-specific or spatially distributed sub-populations. Samples collected from humans shared haplotypes with free-range chickens and/or pigs. Africa remains under-explored for T . gondii genetic diversity and this study provides the first detailed definition of haplotypes circulating in human and animal populations in Nigeria.
Detection and Sequence Analysis of Toxoplasma Gondii B1 Gene in Tissues of Some Bird Species in Plateau State, Nigeria
Toxoplasma gondii is a single-cell parasite capable of infecting almost all homeotherms posing a grave public health risk globally. There is limited available literature on the T. gondii strains circulating in bird species in the Plateau State, of Nigeria. Consequently, this study was carried out to identify and confirm T. gondii infection and also determine the relationship of the DNA sequences with those of bird species in other parts of the world. To achieve this, brain and heart tissues of 25 bird species were sampled and a nested polymerase chain reaction (nPCR) and sequence analyses of the B1 gene were carried out. The DNA of T. gondii was identified in the heart and brain tissues of 7/7 (100.0 %) of wild bird species, and 15/18 (83.3 %) of domestic local chickens (Gallus gallus domesticus) sampled. The evolutionary relationship among the T. gondii sequences in this study using phylogenetic tree constructed by maximum likelihood method showed the sequences shared a common ancestor with the Type I RH strain (GenBank: AF179871). The T. gondii sequences were in a cluster distinct from other sequences in the GenBank. Calculations of genetic differentiation and genetic diversity indices undertaken and collated revealed three haplotypes with higher haplotype diversity within the T. gondii sequences obtained from wild birds (0.667) compared with the sequences from local chickens (0.333). A 97–100 % homology among the aligned sequences of T. gondii in the study shows that only one strain type exists in all of the samples. This study has established the occurrence of T. gondii infection in asymptomatic bird species in the study area and portrays them as carriers, and potential sources of human infection.
Quinolone-resistant Escherichia coli at the interface between humans, poultry and their shared environment- a potential public health risk
Background Commensal Escherichia coli residing in the guts of humans and animals are reservoirs of multidrug resistance (MDR) genes, including quinolone resistance genes, in humans and poultry. This study aimed to characterize quinolones resistance in E. coli recovered from poultry workers, chickens, and poultry farm/market environments in Abuja, Nigeria. Methods This was a cross-sectional study conducted between December 2018 and April 2019 comprising poultry workers, chickens and their poultry farm/market environments. This study characterized E. coli isolates from stool, faecal and environmental samples using antimicrobial susceptibility testing and whole-genome sequencing methods. Core-genome multilocus sequences-based phylogeny was used to determine the relatedness between quinolone-resistant E. coli isolates. Data were analyzed using descriptive statistics. Results Of 110 E. coli isolates, quinolone-resistant phenotypes were observed in 68.2% ( n  = 75) isolates. Whole-genome sequencing detected plasmid-mediated quinolone resistance (PMQR) genes in 63.6% ( n  = 70) isolates. The most prevalent PMQR gene detected in 56 of these 70 E. coli isolates was qnrS1 , followed by qnrB19 in 14 isolates and aac(6’)-lb-cr in two isolates. Fifteen ciprofloxacin and 19 nalidixic acid-resistant isolates respectively showed double mutations in the quinolone-resistance determining regions (QRDRs) of gyrA , with single or double mutations in parC , and a single mutation in parE . The most prevalent amino-acid substitutions observed were S83L + D87N in gyrA (46.5%, n  = 20), S80I in parC (51.2%, n  = 22) and S458A in parE (14%, n  = 6). About 2.9% (2/70) of PMQR isolates were extended-spectrum beta-lactamase (ESBL) producers while 2.9% (2/70) had plasmid-mediated colistin resistance (PMCR) genes. Conclusions PMQR genes were prevalent in E. coli isolates recovered from healthy humans, chickens and poultry farm/market environments. PMCR genes ( mcr-1.1 ) occurred in PMQR-positive isolates recovered from manure and drinking water originating from poultry farm/market environments. It was found that the gene encoding ESBL coexisted with qnrS- positive isolates of human and avian origin. Horizontal transfer of PMQR genes among E. coli isolates in the human-poultry-environment interface has public health implications for the spread of antimicrobial resistance. Relevant government agencies should enforce regulations to restrict the use of critically important antimicrobials in poultry production.
Induction of Rabies Virus Infection in Mice Brain may Up and Down Regulate Type II Interferon gamma via epigenetic modifications
As feared and deadly human diseases globally, Rabies virus contrived mechanisms to escape early immune recognition via suppression of the interferon response. This study, preliminarily investigated whether Rabies virus employs epigenetic mechanism for the suppression of the interferon using the Challenge virus standard (CVS) strain and Nigerian street Rabies virus (SRV) strain. Mice were challenged with Rabies virus (RABV) infection, and presence of RABV antigen was assessed by direct fluorescent antibody test (DFAT). A real time quantitative Polymerase chain reaction (qRT-PCR) was used to measure the expression of type II interferon gamma ( IFNG) and methylation specific quantitative PCR for methylation analysis of 1FNG promoter region. Accordingly, DNA methyltransferase (DNMT) and histone acetyltransferase (HAT) enzymes activities were determined. RABV antigen was detected in all infected samples. A statistically significant increase ( p  < 0.05) in mRNA level of IFNG was observed at the onset of the disease and a decrease as the disease progressed. An increase in methylation in the test groups from the control group was observed, with a fluctuation in methylation as the disease progressed. DNMT and HAT activities also agree with methylation as there was an observed increase activity in test group compared with control group. Similar fluctuation pattern was observed in both CVS and SRV groups as the disease progressed with HAT, being the most active proportionally. This study suggests that epigenetic modification via DNA methylation and histone acetylation may have played a role in the expression of type II interferon gamma in Rabies virus infection. Graphical abstract
Antibiotic resistance and molecular characteristics of Staphylococcus aureus isolated from backyard-raised pigs and pig workers
Staphylococcus aureus is a commensal and pathogenic bacterium with impact on public health and livestock industry. The study investigated nasal carriage, antibiotic resistance, and molecular characterization of S. aureus in pigs and pig workers. Nasal swabs from 300 backyard-raised pigs and 101 pig workers were used for the study. Resulting isolates were confirmed using MALDI-TOF MS, tested for antibiotic resistance, and three different multiplex PCRs were used to detect enterotoxin, mecA, spaA, scn, and pvl genes. spa typing was used to annotate the isolates into MLST clonal complexes (CC). Structured questionnaire was used to access possible risk factors for S. aureus carriage. The prevalence of S. aureus in pigs and pig workers were 5.3 and 12.9%, respectively. The isolates were resistant to beta-lactams (97%), tetracycline (62%), sulfonamide (52%), aminoglycoside (20.6%), fluoroquinolone (24%), and mupirocin (3.4%). Twenty seven (93%) of the isolates carried scn, 7(24%) pvl, and 12 (41%) enterotoxin genes, respectively. Questionnaire survey showed medical-related occupation of household members was associated (p < 0.5) with S. aureus carriage. This study suggests the presence of human multidrug resistant strains of S. aureus, high carriage of pvl, and enterotoxin genes, and CC5, CC15, and CC152 were the CC-groups shared among pigs and pig workers.
Three operational taxonomic units of Eimeria are common in Nigerian chickens and may undermine effective molecular diagnosis of coccidiosis
Background Chicken is fast becoming the world’s most consumed meat. As a consequence poultry health is more important now than ever before, with pathogens of chickens recognised as serious threats to food security. One such threat are Eimeria species parasites, protozoa which can cause the disease coccidiosis. Eimeria can compromise economic poultry production and chicken welfare, and have serious consequences for poor livestock keepers. Seven Eimeria species that infect chickens are recognised with a global enzootic distribution. More recently three cryptic Operational Taxonomic Units (OTUx, y and z) have been described in populations of Eimeria recovered from chickens in Australia. Two of the three OTUs have also been detected in sub-Saharan Africa, but their occurrence, pathology and the risk they pose is largely unknown. Results Nigeria has witnessed a dramatic expansion in poultry production and is now the largest poultry producer in Africa. Here, faecal samples collected from nine of 12 commercial chicken farms sampled in Kaduna state, Nigeria, were found to contain eimerian oocysts. After amplification by in vivo propagation all three cryptic OTU genotypes were detected using polymerase chain reaction (PCR), including OTUy for the first time outside of Australia. Comparison with a widely used, established Eimeria species-specific PCR assay revealed failure to detect the OTU genotypes. Conclusions All three of the Eimeria OTU genotypes appear to be common in north-western Nigeria. The failure of a leading species-specific molecular assay to detect these genotypes indicates a risk of false negative Eimeria diagnosis when using molecular tools and suggests that the spatial occurrence of each OTU may be far wider than has been recognised. The risk posed by these novel genotypes is unknown, but it is clear that a better understanding of Eimeria occurrence is required together with the validation of effective diagnostics.