Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Kwon, Byungsuk"
Sort by:
Immune regulation through tryptophan metabolism
Amino acids are fundamental units of molecular components that are essential for sustaining life; however, their metabolism is closely interconnected to the control systems of cell function. Tryptophan (Trp) is an essential amino acid catabolized by complex metabolic pathways. Several of the resulting Trp metabolites are bioactive and play central roles in physiology and pathophysiology. Additionally, various physiological functions of Trp metabolites are mutually regulated by the gut microbiota and intestine to coordinately maintain intestinal homeostasis and symbiosis under steady state conditions and during the immune response to pathogens and xenotoxins. Cancer and inflammatory diseases are associated with dysbiosis- and host-related aberrant Trp metabolism and inactivation of the aryl hydrocarbon receptor (AHR), which is a receptor of several Trp metabolites. In this review, we focus on the mechanisms through which Trp metabolism converges to AHR activation for the modulation of immune function and restoration of tissue homeostasis and how these processes can be targeted using therapeutic approaches for cancer and inflammatory and autoimmune diseases. Tryptophan: Breakdown products influencing health and disease The dietary essential amino acid tryptophan is converted by cellular metabolism into breakdown products that play regulatory roles in health and disease, some involving their effects on a gene control protein called the aryl hydrocarbon receptor (AHR). Su-Kil Seo at Inje University, Busan, and Byungsuk Kwon at the University of Ulsan, in South Korea, review recent insights into the role of several catabolites (breakdown products) of tryptophan in regulating the AHR. The effects of aberrant tryptophan metabolism on the AHR can promote inflammatory diseases and cancers. In addition to the body’s own metabolism, tryptophan catabolites are produced by the body’s natural microbes. Many of the effects in health and disease involve regulation of the immune system. Drugs able to interact with the AHR protein could be potential treatments for a variety of inflammatory diseases.
Inhibition of acute lethal pulmonary inflammation by the IDO–AhR pathway
The lung is a prototypic organ that was evolved to reduce immunopathology during the immune response to potentially hazardous endogenous and exogenous antigens. In this study, we show that donor CD4⁺ T cells transiently induced expression of indoleamine 2,3-dioxygenase (IDO) in lung parenchyma in an IFN-γ–dependent manner early after allogeneic hematopoietic stem cell transplantation (HSCT). Abrogation of host IDO expression by deletion of the IDO gene or the IFN-γ gene in donor T cells or by FK506 treatment resulted in acute lethal pulmonary inflammation known as idiopathic pneumonia syndrome (IPS). Interestingly, IL-6 strongly induced IDO expression in an IFN-γ–independent manner when deacetylation of STAT3 was inhibited. Accordingly, a histone deacetylase inhibitor (HDACi) could reduce IPS in the state where IFN-γ expression was suppressed by FK506. Finally, L-kynurenine produced by lung epithelial cells and alveolar macrophages during IPS progression suppresses the inflammatory activities of lung epithelial cells and CD4⁺ T cells through the aryl hydrocarbon receptor pathway. Taken together, our results reveal that IDO is a critical regulator of acute pulmonary inflammation and that regulation of IDO expression by HDACi may be a therapeutic approach for IPS after HSCT.
Intervention with costimulatory pathways as a therapeutic approach for graft-versus-host disease
Graft-versus-host disease (GVHD) is mediated by mature donor T cells contained in the hematopoietic stem cell graft. During the development of GVHD, signaling through a variety of costimulatory receptors plays an important role in allogeneic T cell responses. Even though delivery of costimulatory signals is a prerequisite for full activation of donor T cells in the phase of their interactions with host APCs, their involvement with GVHD might occur over multiple stages. Like many other aspects of GVHD, promise of therapeutic interventions with costimulatory pathways has been gleaned from preclinical models. In this review, I summarize some of the advances in roles of costimulatory molecules in GVHD pathophysiology and discuss preclinical approaches that warrant further exploration in the clinic, focusing on novel strategies to delete pathogenic T cells.
Combined Stimulation of IL-2 and 4-1BB Receptors Augments the Antitumor Activity of E7 DNA Vaccines by Increasing Ag-Specific CTL Responses
Human papillomavirus (HPV) infection is a major cause of cervical cancer. Here, we investigate whether concurrent therapy using HPV E7 DNA vaccines (pE7) plus IL-2 vs. IL-15 cDNA and anti-4-1BB Abs might augment antitumor activity against established tumors. IL-2 cDNA was slightly better than IL-15 cDNA as a pE7 adjuvant. Co-delivery of pE7+IL-2 cDNA increased tumor cure rates from 7% to 27%, whereas co-delivery of pE7+IL-2 cDNA with anti-4-1BB Abs increased tumor cure rates from 27% to 67% and elicited long-term memory responses. This increased activity was concomitant with increased induction of Ag-specific CTL activity and IFN-γ responses, but not with Ag-specific IgG production. Moreover, the combined stimulation of IL-2 and 4-1BB receptors with rIL-2 and anti-4-1BB Abs resulted in enhanced production of IFN-γ from Ag-specific CD8+ T cells. However, this effect was abolished by treatment with anti-IL-2 Abs and 4-1BB-Fc, suggesting that the observed effect was IL-2- and anti-4-1BB Ab-specific. A similar result was also obtained for Ag-specific CTL activity. Thus, these studies demonstrate that combined stimulation through the IL-2 and 4-1BB receptors augments the Ag-specific CD8+ CTL responses induced by pE7, increasing tumor cure rates and long-term antitumor immune memory. These findings may have implications for the design of DNA-based therapeutic vaccines against cancer.
Reverse signaling through the costimulatory ligand CD137L in epithelial cells is essential for natural killer cell-mediated acute tissue inflammation
Renal ischemia-reperfusion injury (IRI) after kidney transplantation is a major cause of delayed graft function. Even though IRI is recognized as a highly coordinated and specific process, the pathways and mechanisms through which the innate response is activated are poorly understood. In this study, we used a mouse model of acute kidney IRI to examine whether the interactions of costimulatory receptor CD137 and its ligand (CD137L) are involved in the early phase of acute kidney inflammation caused by IRI. We report here that the specific expressions of CD137 on natural killer cells and of CD137L on tubular epithelial cells (TECs) are required for acute kidney IRI. Reverse signaling through CD137L in TECs results in their production of the chemokine (C-X-C motif) receptor 2 ligands CXCL1 and CXCL2 and the subsequent induction of neutrophil recruitment, resulting in a cascade of proinflammatory events during kidney IRI. Our findings identify an innate pathogenic pathway for renal IRI involving the natural killer cell–TEC–neutrophil axis, whereby CD137–CD137L interactions provide the causal contribution of epithelial cell dysregulation to renal IRI. The CD137L reverse signaling pathway in epithelial cells therefore may represent a good target for blocking the initial stage of inflammatory diseases, including renal IRI.
Regulatory roles of dermal type 2 innate lymphoid cells
Type 2 immune immunity evolved a unique system to protect against noxious xenobiotics at the epithelial bar- rier) Recently, epithelial cell-derived cytokines IL-25, IL-33 and TSLP have been shown to be critical in producing Th2 cytokines, including IL-4, IL-5, IL- 9 and IL-13, eby type 2 innate lymphoid cells (ILC2s) as well as Th2 cells.
CD137 Signaling Is Critical in Fungal Clearance during Systemic Candida albicans Infection
Invasive fungal infections by Candida albicans frequently cause mortality in immunocompromised patients. Neutrophils are particularly important for fungal clearance during systemic C. albican infection, yet little has been known regarding which surface receptor controls neutrophils’ antifungal activities. CD137, which is encoded by Tnfrsf9, belongs to the tumor necrosis receptor superfamily and has been shown to regulate neutrophils in Gram-positive bacterial infection. Here, we used genetic and immunological tools to probe the involvement of neutrophil CD137 signaling in innate defense mechanisms against systemic C. albicans infection. We first found that Tnfrsf9−/− mice were susceptible to C. albicans infection, whereas injection of anti-CD137 agonistic antibody protected the host from infection, suggesting that CD137 signaling is indispensable for innate immunity against C. albicans infection. Priming of isolated neutrophils with anti-CD137 antibody promoted their phagocytic and fungicidal activities through phospholipase C. In addition, injection of anti-CD137 antibody significantly augmented restriction of fungal growth in Tnfrsf9−/− mice that received wild-type (WT) neutrophils. In conclusion, our results demonstrate that CD137 signaling contributes to defense mechanisms against systemic C. albicans infection by promoting rapid fungal clearance.