Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
139 result(s) for "Kyle, Dennis E."
Sort by:
Artemisinin-Induced Dormancy in Plasmodium falciparum: Duration, Recovery Rates, and Implications in Treatment Failure
Background. Despite the remarkable activity of artemisinin and its derivatives, monotherapy with these agents has been associated with high rates of recrudescence. The temporary arrest of the growth of ring-stage parasites (dormancy) after exposure to artemisinin drugs provides a plausible explanation for this phenomenon. Methods. Ring-stage parasites of several Plasmodium falciparum lines were exposed to different doses of dihydroartemisinin (DHA) alone or in combination with mefloquine. For each regime, the proportion of recovering parasites was determined daily for 20 days. Results. Parasite development was abruptly arrested after a single exposure to DHA, with some parasites being dormant for up to 20 days. Approximately 50% of dormant parasites recovered to resume growth within the first 9 days. The overall proportion of parasites recovering was dose dependent, with recovery rates ranging from 0.044% to 1.313%. Repeated treatment with DHA or with DHA in combination with mefloquine led to a delay in recovery and an ∼10-fold reduction in total recovery. Strains with different genetic backgrounds appeared to vary in their capacity to recover. Conclusions. These results imply that artemisinin-induced arrest of growth occurs readily in laboratory-treated parasites and may be a key factor in P. falciparum malaria treatment failure.
Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae
Diseases caused by pathogenic free-living amoebae include primary amoebic meningoencephalitis (Naegleria fowleri), granulomatous amoebic encephalitis (Acanthamoeba spp.), Acanthamoeba keratitis, and Balamuthia amoebic encephalitis (Balamuthia mandrillaris). Each of these are difficult to treat and have high morbidity and mortality rates due to lack of effective therapeutics. Since repurposing drugs is an ideal strategy for orphan diseases, we conducted a high throughput phenotypic screen of 12,000 compounds from the Calibr ReFRAME library. We discovered a total of 58 potent inhibitors (IC.sub.50 <1 [mu]M) against N. fowleri (n = 19), A. castellanii (n = 12), and B. mandrillaris (n = 27) plus an additional 90 micromolar inhibitors. Of these, 113 inhibitors have never been reported to have activity against Naegleria, Acanthamoeba or Balamuthia. Rapid onset of action is important for new anti-amoeba drugs and we identified 19 compounds that inhibit N. fowleri in vitro within 24 hours (halofuginone, NVP-HSP990, fumagillin, bardoxolone, belaronib, and BPH-942, solithromycin, nitracrine, quisinostat, pabinostat, pracinostat, dacinostat, fimepinostat, sanguinarium, radicicol, acriflavine, REP3132, BC-3205 and PF-4287881). These compounds inhibit N. fowleri in vitro faster than any of the drugs currently used for chemotherapy. The results of these studies demonstrate the utility of phenotypic screens for discovery of new drugs for pathogenic free-living amoebae, including Acanthamoeba for the first time. Given that many of the repurposed drugs have known mechanisms of action, these compounds can be used to validate new targets for structure-based drug design.
Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis
Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.
Effects of Artesunate on Parasite Recrudescence and Dormancy in the Rodent Malaria Model Plasmodium vinckei
Artemisinin (ART) is the recommended first line therapy for treating uncomplicated and drug-resistant Plasmodium falciparum, the most pathogenic form of malaria. However, treatment failure following ART monotherapy is not uncommon and resistance to this rapidly acting drug has been reported in the Thai-Cambodian border. Recent in vitro studies have shown that following treatment with dihydroartemisinin (DHA), the development of ring-stage parasites is arrested for up to 20 days. These arrested (i.e. dormant) rings could be responsible for the recrudescence of infection that is observed following ART monotherapy. To develop a better understanding of the stage-specific effects of ART and determine if dormancy occurs in vivo, the ART derivative artesunate (AS) was used to treat mice infected with the synchronous rodent malaria parasites P. vinckei petteri (non-lethal) and P. v. vinckei (lethal). Results show that in both the non-lethal and lethal strains, ring-stage parasites are the least susceptible to treatment with AS and that the day of treatment has more of an impact on recrudescence than the total dose administered. Additionally, 24 hrs post-treatment with AS, dormant forms similar in morphology to those seen in vitro were observed. Finally, rate of recrudescence studies suggest that there is a positive correlation between the number of dormant parasites present and when recrudescence occurs in the vertebrate host. Collectively, these data suggest that dormancy occurs in vivo and contributes to recrudescence that is observed following AS treatment. It is possible that this may represent a novel mechanism of parasite survival following treatment with AS.
Screening the Global Health Priority Box against Plasmodium berghei liver stage parasites using an inexpensive luciferase detection protocol
Background Malaria, a disease caused by parasites of the genus Plasmodium , continues to impact many regions globally. The rise in resistance to artemisinin-based anti-malarial drugs highlights the need for new treatments. Ideally, new anti-malarials will kill the asymptomatic liver stages as well as the symptomatic blood stages. While blood stage screening assays are routine and efficient, liver stage screening assays are more complex and costly. To decrease the cost of liver stage screening, a previously reported luciferase detection protocol requiring only common laboratory reagents was adapted for testing against luciferase-expressing Plasmodium berghei liver stage parasites. Methods After optimizing cell lysis conditions, the concentration of reagents, and the density of host hepatocytes (HepG2), the protocol was validated with 28 legacy anti-malarials to show this simple protocol produces a stable signal useful for obtaining quality small molecule potency data similar to that obtained from a high content imaging endpoint. The protocol was then used to screen the Global Health Priority Box (GHPB) and confirm the potency of hits in dose–response assays. Selectivity was determined using a galactose-based, 72 h HepG2 assay to avoid missing mitochondrial-toxic compounds due to the Crabtree effect. Receiver-operator characteristic plots were used to retroactively characterize the screens’ predictive value. Results Optimal luciferase signal was achieved using a lower HepG2 seed density (5 × 10 3 cells/well of a 384-well microtitre plate) compared to many previously reported luciferase-based screens. While producing lower signal compared to a commercial alternative, this luciferase detection method was found much more stable, with a > 3 h half-life, and robust enough for producing dose–response plots with as few as 500 sporozoites/well. A screen of the GHPB resulted in 9 hits with selective activity against P. berghei liver schizonts, including MMV674132 which exhibited 30.2 nM potency. Retrospective analyses show excellent predictive value for both anti-malarial activity and cytotoxicity. Conclusions This method is suitable for high-throughput screening at a cost nearly 20-fold less than using commercial luciferase detection kits, thereby enabling larger liver stage anti-malarial screens and hit optimization make-test cycles. Further optimization of the hits detected using this protocol is ongoing.
Streamlining sporozoite isolation from mosquitoes by leveraging the dynamics of migration to the salivary glands
Background Sporozoites isolated from the salivary glands of Plasmodium -infected mosquitoes are a prerequisite for several basic and pre-clinical applications. Although salivary glands are pooled to maximize sporozoite recovery, insufficient yields pose logistical and analytical hurdles; thus, predicting yields prior to isolation would be valuable. Preceding oocyst densities in the midgut is an obvious candidate. However, it is unclear whether current understanding of its relationship with sporozoite densities can be used to maximize yields, or whether it can capture the potential density-dependence in rates of sporozoite invasion of the salivary glands. Methods This study presents a retrospective analysis of Anopheles stephensi mosquitoes infected with two strains of the rodent-specific Plasmodium berghei. Mean oocyst densities were estimated in the midguts earlier in the infection (11–15 days post-blood meal), with sporozoites pooled from the salivary glands later in the infection (17–29 days). Generalized linear mixed effects models were used to determine if (1) mean oocyst densities can predict sporozoite yields from pooled salivary glands, (2) whether these densities can capture differences in rates of sporozoite invasion of salivary glands, and (3), if the interaction between oocyst densities and time could be leveraged to boost overall yields. Results The non-linear effect of mean oocyst densities confirmed the role of density-dependent constraints in limiting yields beyond certain oocyst densities. Irrespective of oocyst densities however, the continued invasion of salivary glands by the sporozoites boosted recoveries over time (17–29 days post-blood meal) for either parasite strain. Conclusions Sporozoite invasion of the salivary glands over time can be leveraged to maximize yields for P. berghei . In general, however, invasion of the salivary glands over time is a critical fitness determinant for all Plasmodium species (extrinsic incubation period, EIP). Thus, delaying sporozoite collection could, in principle, substantially reduce dissection effort for any parasite within the genus, with the results also alluding to the potential for changes in sporozoites densities over time to modify infectivity for the next host.
The influence of oviposition status on measures of transmission potential in malaria-infected mosquitoes depends on sugar availability
Background Like other oviparous organisms, the gonotrophic cycle of mosquitoes is not complete until they have selected a suitable habitat to oviposit. In addition to the evolutionary constraints associated with selective oviposition behavior, the physiological demands relative to an organism’s oviposition status also influence their nutrient requirement from the environment. Yet, studies that measure transmission potential (vectorial capacity or competence) of mosquito-borne parasites rarely consider whether the rates of parasite replication and development could be influenced by these constraints resulting from whether mosquitoes have completed their gonotrophic cycle. Methods Anopheles stephensi mosquitoes were infected with Plasmodium berghei , the rodent analog of human malaria, and maintained on 1% or 10% dextrose and either provided oviposition sites (‘oviposited’ herein) to complete their gonotrophic cycle or forced to retain eggs (‘non-oviposited’). Transmission potential in the four groups was measured up to 27 days post-infection as the rates of (i) sporozoite appearance in the salivary glands (‘extrinsic incubation period' or EIP), (ii) vector survival and (iii) sporozoite densities. Results In the two groups of oviposited mosquitoes, rates of sporozoite appearance and densities in the salivary glands were clearly dependent on sugar availability, with shorter EIP and higher sporozoite densities in mosquitoes fed 10% dextrose. In contrast, rates of appearance and densities in the salivary glands were independent of sugar concentrations in non-oviposited mosquitoes, although both measures were slightly lower than in oviposited mosquitoes fed 10% dextrose. Vector survival was higher in non-oviposited mosquitoes. Conclusions Costs to parasite fitness and vector survival were buffered against changes in nutritional availability from the environment in non-oviposited but not oviposited mosquitoes. Taken together, these results suggest vectorial capacity for malaria parasites may be dependent on nutrient availability and oviposition/gonotrophic status and, as such, argue for more careful consideration of this interaction when estimating transmission potential. More broadly, the complex patterns resulting from physiological (nutrition) and evolutionary (egg-retention) trade-offs described here, combined with the ubiquity of selective oviposition behavior, implies the fitness of vector-borne pathogens could be shaped by selection for these traits, with implications for disease transmission and management. For instance, while reducing availability of oviposition sites and environmental sources of nutrition are key components of integrated vector management strategies, their abundance and distribution are under strong selection pressure from the patterns associated with climate change. Graphical Abstract
Naegleria fowleri: Protein structures to facilitate drug discovery for the deadly, pathogenic free-living amoeba
Naegleria fowleri is a pathogenic, thermophilic, free-living amoeba which causes primary amebic meningoencephalitis (PAM). Penetrating the olfactory mucosa, the brain-eating amoeba travels along the olfactory nerves, burrowing through the cribriform plate to its destination: the brain’s frontal lobes. The amoeba thrives in warm, freshwater environments, with peak infection rates in the summer months and has a mortality rate of approximately 97%. A major contributor to the pathogen’s high mortality is the lack of sensitivity of N . fowleri to current drug therapies, even in the face of combination-drug therapy. To enable rational drug discovery and design efforts we have pursued protein production and crystallography-based structure determination efforts for likely drug targets from N . fowleri . The genes were selected if they had homology to drug targets listed in Drug Bank or were nominated by primary investigators engaged in N . fowleri research. In 2017, 178 N . fowleri protein targets were queued to the Seattle Structural Genomics Center of Infectious Disease (SSGCID) pipeline, and to date 89 soluble recombinant proteins and 19 unique target structures have been produced. Many of the new protein structures are potential drug targets and contain structural differences compared to their human homologs, which could allow for the development of pathogen-specific inhibitors. Five of the structures were analyzed in more detail, and four of five show promise that selective inhibitors of the active site could be found. The 19 solved crystal structures build a foundation for future work in combating this devastating disease by encouraging further investigation to stimulate drug discovery for this neglected pathogen.
Single-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signatures and therapeutic targets
The resilience of Plasmodium vivax , the most widely-distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite’s influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax -infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response are upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.
The transcriptome of Balamuthia mandrillaris trophozoites for structure-guided drug design
Balamuthia mandrillaris , a pathogenic free-living amoeba, causes cutaneous skin lesions as well as granulomatous amoebic encephalitis, a ‘brain-eating’ disease. As with the other known pathogenic free-living amoebas ( Naegleria fowleri and Acanthamoeba species), drug discovery efforts to combat Balamuthia infections of the central nervous system are sparse; few targets have been validated or characterized at the molecular level, and little is known about the biochemical pathways necessary for parasite survival. Current treatments of encephalitis due to B. mandrillaris lack efficacy, leading to case fatality rates above 90%. Using our recently published methodology to discover potential drugs against pathogenic amoebas, we screened a collection of 85 compounds with known antiparasitic activity and identified 59 compounds that impacted the growth of Balamuthia trophozoites at concentrations below 220 µM. Since there is no fully annotated genome or proteome of B. mandrillaris , we sequenced and assembled its transcriptome from a high-throughput RNA-sequencing (RNA-Seq) experiment and located the coding sequences of the genes potentially targeted by the growth inhibitors from our compound screens. We determined the sequence of 17 of these target genes and obtained expression clones for 15 that we validated by direct sequencing. These will be used in the future in combination with the identified hits in structure guided drug discovery campaigns to develop new approaches for the treatment of Balamuthia infections.