Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,015 result(s) for "López-López, Alberto"
Sort by:
Instrumentally Inclusive: The Political Psychology of Homonationalism
Can nativist attitudes condition support for LGBT+ rights? The sustained advance in pro-LGBT+ attitudes in the West often contrasts with the greening of anti-immigrant sentiment propagated by nativist supply-side actors. We argue that these parallel trends are causally connected, theorizing that exposure to sexually conservative ethnic out-groups can provoke an instrumental increase in LGBT+ inclusion, particularly among those hostile toward immigration. Leveraging experiments in Britain and Spain, we provide causal evidence that citizens strategically liberalize their levels of support for LGBT+ rights when opponents of these measures are from the ethnic out-group. In a context where sexuality-based liberalism is nationalized, increasing tolerance toward LGBT+ citizens is driven by a desire among nativist citizens to socially disidentify from those out-groups perceived as inimical to these nationalized norms. Our analyses provide a critical interpretation of positive trends in LGBT+ tolerance with instrumental liberalism masking lower rates of genuine shifts in LGBT+ inclusion.
Thermography Sensor to Assess Motor and Sensitive Neuromuscular Sequels of Brain Damage
Introduction. The aim of this study was to observe the validity, diagnostic capacity, and reliability of the thermographic technique in the analysis of sensitive and motor sequelae in patients with chronic brain damage. Method. A longitudinal descriptive observational study was performed. Forty-five people with impairment in at least one anatomical region participated in and completed this study. All patients who had become infected by SARS-CoV-2 in the past year were excluded. Thermographic measurement was conducted, and the Modified Ashworth Scale and Pressure Pain Threshold was analyzed. Results. A high correlation between two times of thermography data was observed. The Spearman correlations obtained between the Ashworth score on each leg and the temperature given by thermography were all significant. Discussion and conclusions. Despite the above, the Spearman correlations obtained between the PPT in each leg and the temperature offered by thermography were not significant in any of the measurements. For this reason, thermography is a potential tool for the diagnosis and assessment of neuromuscular motor sequelae, but not for sensitive sequelae, after brain injury. Nevertheless, for the time being, no statistical relationship has been observed between the data reported by thermography and PPT; thus, future studies are needed to further investigate these results.
Cocaine induces paradigm-specific changes to the transcriptome within the ventral tegmental area
During the initial stages of drug use, cocaine-induced neuroadaptations within the ventral tegmental area (VTA) are critical for drug-associated cue learning and drug reinforcement processes. These neuroadaptations occur, in part, from alterations to the transcriptome. Although cocaine-induced transcriptional mechanisms within the VTA have been examined, various regimens and paradigms have been employed to examine candidate target genes. In order to identify key genes and biological processes regulating cocaine-induced processes, we employed genome-wide RNA-sequencing to analyze transcriptional profiles within the VTA from male mice that underwent one of four commonly used paradigms: acute home cage injections of cocaine, chronic home cage injections of cocaine, cocaine-conditioning, or intravenous-self administration of cocaine. We found that cocaine alters distinct sets of VTA genes within each exposure paradigm. Using behavioral measures from cocaine self-administering mice, we also found several genes whose expression patterns corelate with cocaine intake. In addition to overall gene expression levels, we identified several predicted upstream regulators of cocaine-induced transcription shared across all paradigms. Although distinct gene sets were altered across cocaine exposure paradigms, we found, from Gene Ontology (GO) term analysis, that biological processes important for energy regulation and synaptic plasticity were affected across all cocaine paradigms. Coexpression analysis also identified gene networks that are altered by cocaine. These data indicate that cocaine alters networks enriched with glial cell markers of the VTA that are involved in gene regulation and synaptic processes. Our analyses demonstrate that transcriptional changes within the VTA depend on the route, dose and context of cocaine exposure, and highlight several biological processes affected by cocaine. Overall, these findings provide a unique resource of gene expression data for future studies examining novel cocaine gene targets that regulate drug-associated behaviors.
A review of deep learning applications for genomic selection
Background Several conventional genomic Bayesian (or no Bayesian) prediction methods have been proposed including the standard additive genetic effect model for which the variance components are estimated with mixed model equations. In recent years, deep learning (DL) methods have been considered in the context of genomic prediction. The DL methods are nonparametric models providing flexibility to adapt to complicated associations between data and output with the ability to adapt to very complex patterns. Main body We review the applications of deep learning (DL) methods in genomic selection (GS) to obtain a meta-picture of GS performance and highlight how these tools can help solve challenging plant breeding problems. We also provide general guidance for the effective use of DL methods including the fundamentals of DL and the requirements for its appropriate use. We discuss the pros and cons of this technique compared to traditional genomic prediction approaches as well as the current trends in DL applications. Conclusions The main requirement for using DL is the quality and sufficiently large training data. Although, based on current literature GS in plant and animal breeding we did not find clear superiority of DL in terms of prediction power compared to conventional genome based prediction models. Nevertheless, there are clear evidences that DL algorithms capture nonlinear patterns more efficiently than conventional genome based. Deep learning algorithms are able to integrate data from different sources as is usually needed in GS assisted breeding and it shows the ability for improving prediction accuracy for large plant breeding data. It is important to apply DL to large training-testing data sets.
Relationship between the main components of the crystalline lens and the anterior chamber depth after cataract formation
PurposeTo assess the relationship between anterior chamber depth (ACD) and lens thickness (LT), as well as its three main components (anterior and posterior cortex and nucleus thickness), in cataractous and non-cataractous eyes, depending on the axial length (AxL).MethodsAnterior and posterior cortex and nucleus thickness of the crystalline lens, ACD, and AxL were measured using optical low-coherence reflectometry in cataractous and non-cataractous eyes. They were also classified into hyperopia, emmetropia, myopia, and high myopia, depending on AxL; thus, eight subgroups were created. A minimum sample size of 44 eyes (of 44 patients) for each group was recruited. Linear models were fitted for the whole sample and each AxL subgroup to assess if there were differences in the relationships between the crystalline lens variables and ACD, including age as a covariate.ResultsThree hundred seventy cataract patients (237 females, 133 males) and 250 non-cataract controls (180 females, 70 males), aged 70.5 ± 9.4 and 41.9 ± 15.5 years, respectively, were recruited. The mean AxL, ACD, and LT for the cataractous and non-cataractous eyes were 23.90 ± 2.05, 24.11 ± 2.11, 2.64 ± 0.45, and 2.91 ± 0.49, 4.51 ± 0.38, 3.93 ± 0.44 mm, respectively. The inverse relationship of LT, anterior and posterior cortex, and nucleus thickness with ACD was not significantly (p ≥ 0.26) different between cataractous and non-cataractous eyes. Further subclassification of the sample depending on AxL showed that the inverse relationship between the posterior cortex and ACD was no longer significant (p > 0.05) for any non-cataractous AxL group. LT, anterior and posterior cortex, and nucleus thickness was not significantly (p ≥ 0.43) different between cataractous and non-cataractous eyes for the whole sample, and all AxL groups after adjusting for age.ConclusionsThe presence of cataracts does not modify the inverse relationship of the LT, anterior and posterior cortex, and nucleus with ACD. And this relationship does not seem to depend importantly on AxL. Besides, the possible differences in LT, anterior and posterior cortex, and nucleus between cataractous and non-cataractous eyes may not be caused by lens opacification, but possibly by the progressive lens growth due to aging.
Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory
Aging is accompanied by impairments in both circadian rhythmicity and long-term memory. Although it is clear that memory performance is affected by circadian cycling, it is unknown whether age-related disruption of the circadian clock causes impaired hippocampal memory. Here, we show that the repressive histone deacetylase HDAC3 restricts long-term memory, synaptic plasticity, and experience-induced expression of the circadian gene Per1 in the aging hippocampus without affecting rhythmic circadian activity patterns. We also demonstrate that hippocampal Per1 is critical for long-term memory formation. Together, our data challenge the traditional idea that alterations in the core circadian clock drive circadian-related changes in memory formation and instead argue for a more autonomous role for circadian clock gene function in hippocampal cells to gate the likelihood of long-term memory formation. Circadian rhythms are known to modulate memory, but it’s not known whether clock genes in the hippocampus are required for memory consolidation. Here, the authors show that epigenetic regulation of clock gene Period1 in the hippocampus regulates memory and contributes to age-related memory decline, independent of circadian rhythms.
Relationship Between Infrared Thermography and Functional Parameters in the Lower Limbs of Hemiplegic Patients
Introduction: Reliable objective and non-invasive assessments of myotendinous alterations in patients with muscle tone disorders secondary to brain damage represent an important challenge in health science. The aim of this study was to observe the relationship between the skin temperature and the functional response in the triceps suralis of hemiplegic patients in relation to the healthy control group. Methods: A descriptive observational study was conducted based on the STARD recommendations. A total of 26 volunteers, 13 participants with unilateral motor impairment and 13 healthy patients, participated and completed the study. Intragroup and intergroup clinical thermography tests were performed, and the results were compared in relation to the timed up and go test, pain threshold to pressure, and modified Ashworth scale. Results: Statistically relevant differences (p < 0.01) could be observed between the two groups in each test performed. Thermographic analysis revealed a difference in temperature between the healthy and affected sides in the inter- and intra-group comparisons. It was possible to observe statistically significant differences (p < 0.01) between limbs in the brain damage group (the side affected was at a lower temperature), while no such differences were observed between limbs in the healthy control group (p > 0.05). Conclusions: Our results confirmed that clinical thermography could be a potentially useful tool in the assessment of both structural and functional alterations of the musculoskeletal system in patients with chronic brain damage.
Asociación y Objetividad. La triple síntesis como respuesta de Kant al \problema de Hume\
El objetivo del presente trabajo es mostrar en qué sentido la noción kantiana de objetividad teórica constituye una respuesta a lo que Kant denomina «problema de Hume». Para ello, se lleva a cabo un análisis de la Deducción Trascendental, donde Kant ofrece una fundamentación de dicha noción, haciendo especial hincapié en la primera edición y, particularmente, en la conocida doctrina de la triple síntesis. A partir de este análisis se muestra, ya en las conclusiones, que la afinidad trascendental, inseparable de la noción de objetividad teórica, constituye propiamente la respuesta de Kant al problema planteado por Hume.
The Edge Application of Machine Learning Techniques for Fault Diagnosis in Electrical Machines
The advent of digitization has brought about new technologies that enable advanced condition monitoring and fault diagnosis under the Industry 4.0 paradigm. While vibration signal analysis is a commonly used method for fault detection in literature, it often involves the use of expensive equipment in difficult-to-reach locations. This paper presents a solution for fault diagnosis of electrical machines by utilizing machine learning techniques on the edge, classifying information coming from motor current signature analysis (MCSA) for broken rotor bar detection. The paper covers the process of feature extraction, classification, and model training and testing for three different machine learning methods using a public dataset to then export the results to diagnose a different machine. An edge computing approach is adopted for the data acquisition, signal processing and model implementation on an affordable platform, the Arduino. This makes it accessible for small and medium-sized companies, albeit with the limitations of a resource-constrained platform. The proposed solution has been tested on electrical machines in the Mining and Industrial Engineering School of Almadén (UCLM) with positive results.
A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (Crocus sativus L.)
Crocetin is an apocarotenoid formed from the oxidative cleavage of zeaxanthin, by the carotenoid cleavage enzymes CCD2 (in Crocus species) and specific CCD4 enzymes in Buddleja davidii and Gardenia jasminoides. Crocetin accumulates in the stigma of saffron in the form of glucosides and crocins, which contain one to five glucose molecules. Crocetin glycosylation was hypothesized to involve at least two enzymes from superfamily 1 UDP-sugar dependent glycosyltransferases. One of them, UGT74AD1, produces crocins with one and two glucose molecules, which are substrates for a second UGT, which could belong to the UGT79, 91, or 94 families. An in silico search of Crocus transcriptomes revealed six candidate UGT genes from family 91. The transcript profiles of one of them, UGT91P3, matched the metabolite profile of crocin accumulation, and were co-expressed with UGT74AD1. In addition, both UGTs interact in a two-hybrid assay. Recombinant UGT91P3 produced mostly crocins with four and five glucose molecules in vitro, and in a combined transient expression assay with CCD2 and UGT74AD1 enzymes in Nicotiana benthamiana. These results suggest a role of UGT91P3 in the biosynthesis of highly glucosylated crocins in saffron, and that it represents the last missing gene in crocins biosynthesis.