Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
25
result(s) for
"LAGERLOEF, GARY"
Sort by:
Diagnostic Model and Analysis of the Surface Currents in the Tropical Pacific Ocean
2002
A diagnostic model of the tropical circulation over the 0-30-m layer is derived by using quasi-linear and steady physics. The horizontal velocity is directly estimated from sea surface height (TOPEX/Poseidon), surface vector wind (SSM/I) and sea surface temperature (AVHRR + in situ measurements). The absolute velocity is completed using the mean dynamic height inferred from the World Ocean Atlas (WOA). The central issue investigated in this study is the more accurate estimate of equatorial surface currents relative to prior satellite-derived method. The model formulation combines geostrophic, Ekman, and Stommel shear dynamics, and a complementary term from surface buoyancy gradient. The field is compared with velocity observations from 15-m-depth buoy drifter and equatorial Tropical Ocean-Atmosphere (TAO) current meters. Correlations with TAO data on the equator are much higher in the eastern Pacific cold tongue than before. The mean field in the cold tongue is also much more accurate, now showing the equatorial minimum that splits the South Equatorial Current into northern and southern branches. The mean current strength is somewhat less than in drifter composites because the mean dynamic topography from WOA remains too smooth. However, the seasonal cycle and interannual variations are robust, especially anomalies on the order of 1 m s1 during the 1997-98 ENSO. This direct method using satellite measurements provides surface current analyses for numerous research and operational applications.
Journal Article
Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters
by
Dinnat, Emmanuel P.
,
Le Vine, David M.
,
Meissner, Thomas
in
Aeronautics
,
Algorithms
,
Apertures
2019
Since 2009, three low frequency microwave sensors have been launched into space with the capability of global monitoring of sea surface salinity (SSS). The European Space Agency’s (ESA’s) Microwave Imaging Radiometer using Aperture Synthesis (MIRAS), onboard the Soil Moisture and Ocean Salinity mission (SMOS), and National Aeronautics and Space Administration’s (NASA’s) Aquarius and Soil Moisture Active Passive mission (SMAP) use L-band radiometry to measure SSS. There are notable differences in the instrumental approaches, as well as in the retrieval algorithms. We compare the salinity retrieved from these three spaceborne sensors to in situ observations from the Argo network of drifting floats, and we analyze some possible causes for the differences. We present comparisons of the long-term global spatial distribution, the temporal variability for a set of regions of interest and statistical distributions. We analyze some of the possible causes for the differences between the various satellite SSS products by reprocessing the retrievals from Aquarius brightness temperatures changing the model for the sea water dielectric constant and the ancillary product for the sea surface temperature. We quantify the impact of these changes on the differences in SSS between Aquarius and SMOS. We also identify the impact of the corrections for atmospheric effects recently modified in the Aquarius SSS retrievals. All three satellites exhibit SSS errors with a strong dependence on sea surface temperature, but this dependence varies significantly with the sensor. We show that these differences are first and foremost due to the dielectric constant model, then to atmospheric corrections and to a lesser extent to the ancillary product of the sea surface temperature.
Journal Article
Assessment of Aquarius Sea Surface Salinity
by
Lee, Tong
,
Meissner, Thomas
,
Lagerloef, Gary S. E.
in
Aquarius satellite
,
Aquarius Validation Data System (AVDS)
,
sea surface salinity
2018
Aquarius was the first NASA satellite to observe the sea surface salinity (SSS) over the global ocean. The mission successfully collected data from 25 August 2011 to 7 June 2015. The Aquarius project released its final version (Version-5) of the SSS data product in December 2017. The purpose of this paper is to summarize the validation results from the Aquarius Validation Data System (AVDS) and other statistical methods, and to provide a general view of the Aquarius SSS quality to the users. The results demonstrate that Aquarius has met the mission target measurement accuracy requirement of 0.2 psu on monthly averages on 150 km scale. From the triple point analysis using Aquarius, in situ field and Hybrid Coordinate Ocean Model (HYCOM) products, the root mean square errors of Aquarius Level-2 and Level-3 data are estimated to be 0.17 psu and 0.13 psu, respectively. It is important that caution should be exercised when using Aquarius salinity data in areas with high radio frequency interference (RFI) and heavy rainfall, close to the coast lines where leakage of land signals may significantly affect the quality of the SSS data, and at high-latitude oceans where the L-band radiometer has poor sensitivity to SSS.
Journal Article
Validation and Error Analysis of OSCAR Sea Surface Currents
by
Gunn, John T.
,
Johnson, Eric S.
,
Lagerloef, Gary S. E.
in
Current meters
,
Equator
,
Error analysis
2007
Comparisons of OSCAR satellite-derived sea surface currents with in situ data from moored current meters, drifters, and shipboard current profilers indicate that OSCAR presently provides accurate time means of zonal and meridional currents, and in the near-equatorial region reasonably accurate time variability (correlation = 0.5–0.8) of zonal currents at periods as short as 40 days and meridional wavelengths as short as 8°. At latitudes higher than 10° the zonal current correlation remains respectable, but OSCAR amplitudes diminish unrealistically. Variability of meridional currents is poorly reproduced, with severely diminished amplitudes and reduced correlations relative to those for zonal velocity on the equator. OSCAR’s RMS differences from drifter velocities are very similar to those experienced by the ECCO (Estimating the Circulation and Climate of the Ocean) data-assimilating models, but OSCAR generally provides a larger ocean-correlated signal, which enhances its ratio of estimated signal over noise. Several opportunities exist for modest improvements in OSCAR fidelity even with presently available datasets.
Journal Article
Aquarius reveals salinity structure of tropical instability waves
by
Gierach, Michelle M.
,
Dohan, Kathleen
,
Lee, Tong
in
Aquarius
,
Biological oceanography
,
Chemical oceanography
2012
Sea surface salinity (SSS) measurements from the Aquarius/SAC‐D satellite during September–December 2011 provide the first satellite observations of the salinity structure of tropical instability waves (TIWs) in the Pacific. The related SSS anomaly has a magnitude of approximately ±0.5 PSU. Different from sea surface temperature (SST) and sea surface height anomaly (SSHA) where TIW‐related propagating signals are stronger a few degrees away from the equator, the SSS signature of TIWs is largest near the equator in the eastern equatorial Pacific where salty South Pacific water meets the fresher Inter‐tropical Convergence Zone water. The dominant westward propagation speed of SSS near the equator is approximately 1 m/s. This is twice as fast as the 0.5 m/s TIW speed widely reported in the literature, typically from SST and SSHA away from the equator. This difference is attributed to the more dominant 17‐day TIWs near the equator that have a 1 m/s dominant phase speed and the stronger 33‐day TIWs away from the equator that have a 0.5 m/s dominant phase speed. The results demonstrate the important value of Aquarius in studying TIWs. Key Points Provide unprecedented observations of TIW salinity structure of from space Observe faster TIWs speed near than away from equator (not documented before) We explain why TIWs SSS signal propagate faster near the equator
Journal Article
Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations
by
Reverdin, Gilles
,
Grodsky, Semyon A.
,
Kudryavtsev, Vladimir N.
in
Accuracy
,
Aquariums
,
Barrier layers
2012
At its seasonal peak the Amazon/Orinoco plume covers a region of 106 km2in the western tropical Atlantic with more than 1 m of extra freshwater, creating a near‐surface barrier layer (BL) that inhibits mixing and warms the sea surface temperature (SST) to >29°C. Here new sea surface salinity (SSS) observations from the Aquarius/SACD and SMOS satellites help elucidate the ocean response to hurricane Katia, which crossed the plume in early fall, 2011. Its passage left a 1.5 psu high haline wake covering >105 km2 (in its impact on density, the equivalent of a 3.5°C cooling) due to mixing of the shallow BL. Destruction of this BL apparently decreased SST cooling in the plume, and thus preserved higher SST and evaporation than outside. Combined with SST, the new satellite SSS data provide a new and better tool to monitor the plume extent and quantify tropical cyclone upper ocean responses with important implications for forecasting. Key Points Hurricane passage produces a high salinity wake in areas of barrier layer Destruction of this barrier layer decreases SST cooling Decreased SST cooling results in less negative feedback on a hurricane
Journal Article
The Freshwater Balance
by
Lagerloef, Gary S. E.
,
Dohan, Kathleen
,
Kao, Hsun-Ying
in
Advection
,
Aquarius satellite
,
Artificial satellites
2015
Within the North Atlantic subtropical gyre lies a salinity maximumregion, relatively constant in time, yet forced by a seasonally varying strong evaporationzone located several degrees south and advected by wind-driven Ekman currents and geostrophic gyre currents and eddies. Large-scale calculations using in situ salinities to quantify salt divergence in the mixed layer, together with freshwater flux products, cannot account for the observed surface salinity signature. Small-scale and vertical processes must complete the budget. The Aquarius satellite system, launched in June 2011, now provides sea surface salinity observations every seven days at approximately 100 km spacing. Here, we reexamine the surface freshwater balance in the salinity maximum region, the location of the Salinity Processes in the Upper-ocean Regional Study (SPURS) campaign, from a satellite-sensed perspective. Advection of surface salinity by Ocean Surface Current Analyses Real-time (OSCAR) satellite-based surface currents is investigated for the whole region as well as within two boxes that isolate the salinity maximum and the maximum evaporation regions. Locations of imbalance, variability of surface salinity forcing terms, and areas of potential transport and redistribution are explored using satellite observations. A discussion then considers the vertical pathways by which surface waters reach and exchange salinity with the deep ocean, thus contributing to the signal seen at the surface
Journal Article
Spatial Optimal Interpolation of Aquarius Sea Surface Salinity: Algorithms and Implementation in the North Atlantic
2014
A method is presented for mapping sea surface salinity (SSS) from Aquarius level-2 along-track data in order to improve the utility of the SSS fields at short length [O(150 km)] and time [O(1 week)] scales. The method is based on optimal interpolation (OI) and derives an SSS estimate at a grid point as a weighted sum of nearby satellite observations. The weights are optimized to minimize the estimation error variance. As an initial demonstration, the method is applied to Aquarius data in the North Atlantic. The key element of the method is that it takes into account the so-called long-wavelength errors (by analogy with altimeter applications), referred to here as interbeam and ascending/descending biases, which appear to correlate over long distances along the satellite tracks. The developed technique also includes filtering of along-track SSS data prior to OI and the use of realistic correlation scales of mesoscale SSS anomalies. All these features are shown to result in more accurate SSS maps, free from spurious structures. A trial SSS analysis is produced in the North Atlantic on a uniform grid with 0.25° resolution and a temporal resolution of one week, encompassing the period from September 2011 through August 2013. A brief statistical description, based on the comparison between SSS maps and concurrent in situ data, is used to demonstrate the utility of the OI analysis and the potential of Aquarius SSS products to document salinity structure at ~150-km length and weekly time scales.
Journal Article
Status of Aquarius and Salinity Continuity
by
Le Vine, David M.
,
Wentz, Frank J.
,
Lee, Tong
in
Earth Resources And Remote Sensing
,
microwave remote sensing
,
ocean salinity
2018
Aquarius is an L-band radar/radiometer instrument combination that has been designed to measure ocean salinity. It was launched on 10 June 2011 as part of the Aquarius/SAC-D observatory. The observatory is a partnership between the United States National Aeronautics and Space Agency (NASA), which provided Aquarius, and the Argentinian space agency, Comisin Nacional de Actividades Espaciales (CONAE), which provided the spacecraft bus, Satelite de Aplicaciones Cientificas (SAC-D). The observatory was lost four years later on 7 June 2015 when a failure in the power distribution network resulted in the loss of control of the spacecraft. The Aquarius Mission formally ended on 31 December 2017. The last major milestone was the release of the final version of the salinity retrieval (Version 5). Version 5 meets the mission requirements for accuracy, and reflects the continuing progress and understanding developed by the science team over the lifetime of the mission. Further progress is possible, and several issues remained unresolved at the end of the mission that are relevant to future salinity retrievals. The understanding developed with Aquarius is being transferred to radiometer observations over the ocean from NASA's Soil Moisture Active Passive (SMAP) satellite, and salinity from SMAP with accuracy approaching that of Aquarius are already being produced.
Journal Article
The Ocean and the Global Water Cycle
by
SCHMITT, RAYMOND
,
SCHANZE, JULIAN
,
KAO, HSUN-YING
in
Climate change
,
Climate cycles
,
Climatology
2010
More than three-fourths of the global water cycle consists of the annual rainfall and evaporation freshwater exchange between the ocean and atmosphere. The water cycle is expected to intensify in a warmer climate, with shifting large-scale rainfall and drought patterns. Ocean salinity variations in recent decades provide a clear indicator of such changes and offer a key index for monitoring future climate variability related to the hydrologic cycle. In this sense, the ocean behaves like a rain gauge. This simple idea will also contribute to resolving the major discrepancies among rainfall climatologies. Addressing these problems requires a full understanding of complex upper ocean processes such as mixing and advection that balance the net freshwater flux at the surface. The global surface salinity measurement system, including both in situ instruments and satellites, along with regional upper ocean process studies, will soon be in place to advance these studies.
Journal Article