Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "LEDGER, Mark E"
Sort by:
The effects of climatic fluctuations and extreme events on running water ecosystems
Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world.
Drought alters the structure and functioning of complex food webs
Climatic changes could transform rivers as drought becomes more frequent with potentially severe, but largely unknown, consequences at multispecies levels of organization. Now research shows experimentally how the intensification of drought may alter the underlying structure and functioning of freshwater food webs. Climate change is expected to make many regions of the world much drier over coming decades 1 , 2 . More intense drought would transform rivers 3 with potentially severe but largely unknown consequences at higher (multispecies) levels of organization 4 . Here we show experimentally how the intensification of drought may alter the underlying structure and functioning (biomass flux dynamics) of freshwater food webs—networks of species and their interactions 5 . Drought triggered substantial losses of species and links, especially among predators, leading to the partial collapse of the food webs. Total resource–consumer biomass flux was also strongly suppressed by disturbance, yet several network-level properties (such as connectance and interaction diversity) were conserved, driven by consumer resource fidelity and a substantial reconfiguration of fluxes within the webs as production shifted down the size spectrum from large to small species. Our research demonstrates that drier climates could have far-reaching impacts on the functioning of freshwater ecosystems.
Network rewiring conserves the topology of drought-impaired food webs
Extreme climatic events such as drought are increasing in magnitude and frequency, representing one of the biggest threats to freshwaters across the globe. Although drought can cause extensive loss or turnover of biodiversity, food web structure often remains surprisingly unchanged. This topological constancy suggests that ecosystems undergo rewiring of biotic interactions resulting from adaptive species responses, although how compensatory mechanics collectively reorganise food webs are largely unknown. Here, we perform a merging of trophic ecology with an approach from network science (global network alignment, which optimises network comparison and reveals restructuring) to assess the impact of experimental drought on the topology of stream food webs. We found that whilst drought caused substantial biodiversity loss, trophic plasticity among the surviving consumers conserved 80% of the original food web topology, maintaining connectance and in turn stability. This structural inertia was driven by extensive rewiring among the surviving species, but in contrast to expectations, we observed considerable trophic plasticity among dietary specialists who in fact disproportionally rewired more than their generalist counterparts. These findings demonstrate that adaptive dietary shifts among specialist species play an underappreciated role in mitigating the effects of drought and governing the topological persistence of ecological networks. Network alignment of food webs reveals systemwide adaptive dietary shift as a key mechanism for species to persist biodiversity loss and physiological stress under drought, with specialist species proportionally expanded their diets the most.
Local contributions to beta diversity in urban pond networks
Aim An understanding of how biotic communities are spatially organized is necessary to identify and prioritize habitats within landscape‐scale biodiversity conservation. Local contribution to beta diversity (LCBD) identifies individual habitats that make a significant contribution to beta diversity and may have important practical implications, particularly for conservation of habitat networks. In this study, we develop and apply a conservation prioritization approach based on LCBD in aquatic invertebrate communities from 132 ponds. Location Five urban settlements in the UK: Halton, Loughborough, Stockport, Birmingham and Huddersfield. Methods We partition LCBD into richness difference (nestedness: RichDiffLCBD) and species replacement (turnover: ReplLCBD) and identify key environmental variables driving LCBD. We examine LCBD at two scales relevant to conservation planning: within urban settlements and nationally across the UK. Results Significant differences in LCBD values were recorded among the five settlements. In four of the five urban settlements studied, pond sites with the greatest LCBD values typically showed high replacement values. Significant LCBD sites and sites with high taxonomic diversity together supported more of the regional species pool (70%–97%) than sites with high taxonomic diversity alone (54%–94%) or what could be protected by the random selection of sites. LCBD was significantly associated with vegetation shading, surface area, altitude and macrophyte cover. Main conclusions Conservation prioritization that incorporates LCBD and sites with high taxonomic diversity improves the effectiveness of conservation actions within pond habitat networks, ensures sites supporting high biodiversity are protected and provides a method to define a spatial network of protected sites. Identifying new, effective conservation approaches, particularly in urban areas where resources may be scarce and conflicts regarding land use exist, is essential to ensure biodiversity is fully supported, and detrimental anthropogenic effects are reduced.
Biological barriers to restoration: testing the biotic resistance hypothesis in an upland stream recovering from acidification
The biotic resistance hypothesis provides one of several explanations for the limited biological recovery of streams recovering chemically from acidification. The hypothesis proposes that acidification has changed the presence, abundance and interactions among species in acidified streams to the extent that acid-sensitive colonists cannot re-invade even where acidity has ameliorated. As a first step in testing for biotic resistance in streams, we conducted a field experiment to determine whether the success (growth rate) of acid-sensitive recolonists (mayfly nymphs, Baetis rhodani) is reduced by competition with abundant acid-tolerant residents (stonefly nymphs, Leuctra inermis) in a chemically recovering Welsh stream (UK). Gut contents analysis revealed a marked overlap in resource use between the two species. However, when Baetis was exposed to several (0, 0.25, 0.5 and 1 times ambient) densities of its putative competitor, Leuctra, growth rates of the colonist were not affected by the residents at any of the densities tested. These results do not support the hypothesis that resident species constrain colonist populations by affecting growth rates through competition for limited resources or interference. Further work is required to assess whether independent and/or interactive ecological effects of other common residents might affect colonists in ecosystems recovering from past stressors.
Local and landscape scale determinants of macroinvertebrate assemblages and their conservation value in ponds across an urban land-use gradient
Urbanisation represents a growing threat to natural communities across the globe. Small aquatic habitats such as ponds are especially vulnerable and are often poorly protected by legislation. Many ponds are threatened by development and pollution from the surrounding landscape, yet their biodiversity and conservation value remain poorly described. Here we report the results of a survey of 30 ponds along an urban land-use gradient in the West Midlands, UK. We outline the environmental conditions of these urban ponds to identify which local and landscape scale environmental variables determine the biodiversity and conservation value of the macroinvertebrate assemblages in the ponds. Cluster analysis identified four groups of ponds with contrasting macroinvertebrate assemblages reflecting differences in macrophyte cover, nutrient status, riparian shading, the nature of the pond edge, surrounding land-use and the availability of other wetland habitats. Pond conservation status varied markedly across the sites. The richest macroinvertebrate assemblages with high conservation value were found in ponds with complex macrophyte stands and floating vegetation with low nutrient concentrations and little surrounding urban land. The most impoverished assemblages were found in highly urban ponds with hard-engineered edges, heavy shading and nutrient rich waters. A random forest classification model revealed that local factors usually had primacy over landscape scale factors in determining pond conservation value, and constitute a priority focus for management.
Drought rewires the cores of food webs
Droughts are intensifying under climate change. Research into the resilience of stream food webs to drought now shows that ‘rewiring’ of food web structure in the face of species losses helps to buffer changes to the overall network structure. Droughts are intensifying across the globe 1 , 2 , with potentially devastating implications for freshwater ecosystems 3 , 4 . We used new network science approaches to investigate drought impacts on stream food webs and explored potential consequences for web robustness to future perturbations. The substructure of the webs was characterized by a core of richly connected species 5 surrounded by poorly connected peripheral species. Although drought caused the partial collapse of the food webs 6 , the loss of the most extinction-prone peripheral species triggered a substantial rewiring of interactions within the networks’ cores. These shifts in species interactions in the core conserved the underlying core/periphery substructure and stability of the drought-impacted webs. When we subsequently perturbed the webs by simulating species loss in silico , the rewired drought webs were as robust as the larger, undisturbed webs. Our research unearths previously unknown compensatory dynamics arising from within the core that could underpin food web stability in the face of environmental perturbations.
Drought intensification drives turnover of structure and function in stream invertebrate communities
Climatic extremes are becoming more frequent and intense across much of the globe, potentially transforming the biodiversity and functioning of affected ecosystems. In freshwaters, hydrological extremes such as drought can regulate beta diversity, acting as powerful environmental filters to dictate the complement of species and functional traits found at local and landscape scales. New methods that enable beta diversity and its functional equivalent to be partitioned into turnover (replacement of species/functions) and nestedness-resultant (gain/loss of species/functions) components may offer novel insights into the parallel impacts of drought on ecosystem structure and function. Using a series of artificial channels (mesocosms) designed to mimic perennial headwater streams, we experimentally manipulated streamflows to simulate a gradient of drought intensity. We then modelled taxonomic and functional turnover and nestedness of macroinvertebrate communities along this gradient, validating direct gradient approaches (bootstrapping, Mantel tests) against null models of nestedness. Drought intensification produced significant environmental distance decay trends (i.e. communities became increasingly taxonomically and functionally dissimilar the more differentially disturbed by drought they were). Taxonomic distance decay was primarily driven by turnover, while the functional trend reflected a combination of richness differences and turnover at different points along the gradient. Taxonomic and functional distance decay slopes were not significantly different, implying that communities were functionally vulnerable to drying. The increased frequency and intensity of droughts predicted under most climate change scenarios could thus profoundly modify not only the structure of running water invertebrate communities, but also the ecosystem functions they underpin.
Drought alters the functional stability of stream invertebrate communities through time
Aim In fresh waters, most biogeographical understanding of how extreme events such as drought modify biodiversity and ecosystem functioning derives from static, spatial comparisons of ecological communities, between intact and disturbed sites or along stress gradients. Impacts of drought on the development of ecological communities over time remain poorly resolved, with information on parallel trends in community structure and function particularly scarce. In theory, drought could progressively eliminate both species and functional traits, rendering communities increasingly taxonomically and functionally nested subsets of their pre‐existing counterparts. Alternatively, drought could create new niche opportunities, producing a continuous turnover of species and traits, or simply constrain natural community succession. Location Dorset, UK. Taxon Aquatic invertebrates. Methods We studied temporal changes in community structure and function in artificial streams over 2 years, comparing drought (frequent drying) with control (constant flow) conditions. Temporal beta diversity was partitioned into turnover and nestedness components, calculated using both presence–absence and abundance data, and analysed using time‐lag and null modelling approaches. Results Community development was comparable taxonomically under control and drought conditions, driven primarily by temporal turnover of species. Under control conditions, corresponding trends in functional composition were not apparent, and species turnover was characterized by the progressive replacement of some species by others of equivalent abundance. By contrast, species turnover in disturbed communities was accompanied by both functional turnover and greater loss of individuals, indicating that new colonists were not equivalent, either functionally or numerically, to those they replaced. Furthermore, functional dissimilarities between time points were greatest under drought, and more similar in magnitude to taxonomic dissimilarities, implying that drying reduced the stability and redundancy of functional attributes. Main conclusion A shift to drier climate could disrupt the natural development of stream community structure, and undermine functional stability, at local and biogeographical scales, with potentially significant consequences for ecosystem services provisioning in fresh waters.
Ecological networks -beyond food webs
1. A fundamental goal of ecological network research is to understand how the complexity observed in nature can persist and how this affects ecosystem functioning. This is essential for us to be able to predict, and eventually mitigate, the consequences of increasing environmental perturbations such as habitat loss, climate change, and invasions of exotic species. 2. Ecological networks can be subdivided into three broad types: 'traditional' food webs, mutualistic networks and host-parasitoid networks. There is a recent trend towards cross-comparisons among network types and also to take a more mechanistic, as opposed to phenomenological, perspective. For example, analysis of network configurations, such as compartments, allows us to explore the role of co-evolution in structuring mutualistic networks and host-parasitoid networks, and of body size in food webs. 3. Research into ecological networks has recently undergone a renaissance, leading to the production of a new catalogue of evermore complete, taxonomically resolved, and quantitative data. Novel topological patterns have been unearthed and it is increasingly evident that it is the distribution of interaction strengths and the configuration of complexity, rather than just its magnitude, that governs network stability and structure. 4. Another significant advance is the growing recognition of the importance of individual traits and behaviour: interactions, after all, occur between individuals. The new generation of high-quality networks is now enabling us to move away from describing networks based on species-averaged data and to start exploring patterns based on individuals. Such refinements will enable us to address more general ecological questions relating to foraging theory and the recent metabolic theory of ecology. 5. We conclude by suggesting a number of 'dead ends' and 'fruitful avenues' for future research into ecological networks.