Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
107
result(s) for
"La Sorte, Frank A."
Sort by:
role of urban and agricultural areas during avian migration: an assessment of within‐year temporal turnover
by
Hurlbert, Allen H.
,
La Sorte, Frank A.
,
Tingley, Morgan W.
in
Agriculture
,
Agronomy. Soil science and plant productions
,
Animal and plant ecology
2014
AIM: Migration is often identified as the most vulnerable period in the annual cycle for birds, and land‐use change is likely to have altered how avian populations are regulated during migration events. However, the consequences of land‐use change for avian diversity are typically assessed based on annual surveys of breeding communities with little consideration given to migration or other phases of the annual cycle. LOCATION: Forty‐four North American ecoregions. METHODS: We use eBird avian occurrence data to estimate, at a monthly temporal resolution for the combined period 2004 to 2013, how species richness and temporal turnover in species composition is structured within years across a land‐use gradient (intact vegetation, agricultural and urban). RESULTS: Species richness peaked on average during spring and autumn migrations. Intact vegetation had the highest and urban areas the lowest species richness on average. Despite differences in community size, the three land‐use categories had similar patterns of within‐year temporal turnover, suggesting analogous effects of geographic diffusion by migrating species. Agricultural and urban areas had comparatively dampened temporal turnover across the annual cycle, suggesting more homogeneous within‐year species compositions. Relative to eastern ecoregions, differences in species richness and temporal turnover among land‐use categories were substantially more pronounced in western ecoregions. MAIN CONCLUSIONS: Agricultural and urban areas have lower species richness and reduced within‐year temporal turnover across the annual cycle relative to areas of intact vegetation, particularly in the west. Our findings suggest that avian diversity has been simplified across the annual cycle through the influence of human activities, with human‐transformed landscapes maintaining a degree of relevance for migratory birds, especially in the east.
Journal Article
Projected range contractions of montane biodiversity under global warming
2010
Mountains, especially in the tropics, harbour a unique and large portion of the world's biodiversity. Their geographical isolation, limited range size and unique environmental adaptations make montane species potentially the most threatened under impeding climate change. Here, we provide a global baseline assessment of geographical range contractions and extinction risk of high-elevation specialists in a future warmer world. We consider three dispersal scenarios for simulated species and for the world's 1009 montane bird species. Under constrained vertical dispersal (VD), species with narrow vertical distributions are strongly impacted; at least a third of montane bird diversity is severely threatened. In a scenario of unconstrained VD, the location and structure of mountain systems emerge as a strong driver of extinction risk. Even unconstrained lateral movements offer little improvement to the fate of montane species in the Afrotropics, Australasia and Nearctic. Our results demonstrate the particular roles that the geography of species richness, the spatial structure of lateral and particularly vertical range extents and the specific geography of mountain systems have in determining the vulnerability of montane biodiversity to climate change. Our findings confirm the outstanding levels of biotic perturbation and extinction risk that mountain systems are likely to experience under global warming and highlight the need for additional knowledge on species' vertical distributions, dispersal and adaptive capacities.
Journal Article
Global trends in the frequency and duration of temperature extremes
by
La Sorte Frank A
,
Johnston, Alison
,
Ault, Toby R
in
Anthropogenic climate changes
,
Anthropogenic factors
,
Climate change
2021
Anthropogenic climate change has affected the frequency and duration of extreme climate events, including extreme heat events (EHE) and extreme cold events (ECE). How the frequency and duration of both EHE and ECE have changed over time within both terrestrial and marine environments globally has not been fully explored. Here, we use detrended daily estimates of minimum and maximum temperature from the ERA5 reanalysis over a 70-year period (1950–2019) to estimate the daily occurrence of EHE and ECE across the globe. We measure the frequency and duration of EHE and ECE by season across years and estimate how these measures have changed over time. Frequency and duration for both EHE and ECE presented similar patterns characterized by low spatial heterogeneity and strong seasonal variation. High EHE frequency and duration occurred within the Antarctic during the austral summer and winter and within the Arctic Ocean during the boreal winter. High ECE frequency and duration occurred within the Nearctic and Palearctic during the boreal winter and the Arctic Ocean during the boreal summer. The trend analysis presented pronounced differences between frequency and duration, high spatial heterogeneity, especially within terrestrial environments, and strong seasonal variation. Positive EHE trends, primarily in duration within marine environments, occurred during the boreal summer within the mid-latitudes of the Northern Hemisphere and during the austral summer within the mid-latitudes of the Southern Hemisphere. The eastern tropical Pacific contained positive EHE and ECE trends, primary in duration during the boreal winter. Our findings emphasize the many near-term challenges that extreme temperature events are likely to pose for human and natural systems within terrestrial and marine environments, and the need to advance our understanding of the developing long-term implications of these changing dynamics as climate change progresses.
Journal Article
Tracking of climatic niche boundaries under recent climate change
by
La Sorte, Frank A.
,
Jetz, Walter
in
Animal and plant ecology
,
Animal ecology
,
Animal populations
2012
1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post 1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation strategies in particular will benefit through identifying and maintaining dispersal corridors that accommodate diverging dispersal strategies and timetables.
Journal Article
Data coverage, biases, and trends in a global citizen-science resource for monitoring avian diversity
by
La Sorte, Frank A.
,
Cohen, Jeremy M.
,
Jetz, Walter
in
Afrotropical region
,
Antarctic region
,
Australasian region
2024
Aim Understanding and addressing the global biodiversity crisis requires ecological information compiled continuously from across the globe. Data from citizen science initiatives are useful for quantifying species' ecological niches and geographical distributions but can be difficult to apply towards biodiversity monitoring. The presence of fixed geographical locations reduces the opportunistic nature of citizen science data, allowing for more reliable and nuanced trend estimation. The eBird citizen‐science program contains predefined locations whose bird assemblages are sampled across years (‘hotspots’). For hotspots to function as a biodiversity monitoring resource, issues related to data coverage, biases, and trends need to be addressed. Location Global. Methods We estimated the survey completeness of species richness at 300,500 eBird hotspots during 2002–2022. We documented sampling biases at eBird hotspot and non‐hotspot locations during 2022 based on protection status, temperature, precipitation, and landcover. Results A total of 10,410 bird species (ca. 96.9% of total) were recorded at hotspots. The number of hotspots, checklists, and participants and the quality of species richness estimates increased worldwide with the Nearctic containing the strongest and most consistent trends. Compared to non‐hotspots, hotspots oversampled areas with higher protection status. Hotspots and non‐hotspots oversampled warmer and wetter locations in the Antarctic, Nearctic, and Palearctic, and cooler locations in the Afrotropics, Australasia, and the Neotropics. Hotspots and especially non‐hotspots oversampled urban areas. Hotspots and non‐hotspots undersampled shrublands in Australasia. Hotspots and especially non‐hotspots undersampled forests in the Afrotropics, Indomalaya, Neotropics, and Oceania. Main Conclusions Hotspots have captured a large component of the world's avian diversity but have done so inconsistently across space and time. Data quantity and quality are increasing in many regions, but the presence of regionally specific sampling biases and spatial uncertainty in hotspot locations should be addressed when applying the data.
Journal Article
The diversity and abundance of North American bird assemblages fail to track changing productivity
2015
Plant biomass or productivity and the species richness of birds are associated across a range of spatial scales. Species-energy theory is generally assumed to explain these correlations. If true, bird richness should also track productivity temporally, and there should be spatial and temporal relationships between productivity and both bird abundance and bird richness. Using the summer normalized difference vegetation index (NDVI) for 1982-2006 and the North American Breeding Bird Survey, we evaluated the response of avian richness and abundance to interannual changes in plant biomass or productivity. We found positive spatial relationships between richness and NDVI for all 25 years. Temporally, however, richness and NDVI were positively associated at 1579 survey sites and negatively associated at 1627 sites (mean
r
2
= 0.09). Further, total abundance and NDVI were unrelated spatially (
r
2
values spanning <0.01 and 0.03) and weakly related temporally (mean
r
2
= 0.10). We found no evidence that productivity drives bird richness beyond the spatial correlations, and neither prediction arising from species-energy theory was confirmed. Spatial relationships between productivity and bird richness may thus be largely spurious, arising via covariance between plant biomass or productivity and vegetation structural complexity, and the latter may be driving bird communities. This is consistent with the MacArthurs' classic hypothesis that the vertical profile of foliage drives bird species diversity.
Journal Article
Disparities between observed and predicted impacts of climate change on winter bird assemblages
2009
Understanding how climate change affects the structure and function of communities is critical for gauging its full impact on biodiversity. To date, community-level changes have been poorly documented, owing, in part, to the paucity of long-term datasets. To circumvent this, the use of 'space-for-time' substitution-the forecasting of temporal trends from spatial climatic gradients-has increasingly been adopted, often with little empirical support. Here we examine changes from 1975 to 2001 in three community attributes (species richness, body mass and occupancy) for 404 assemblages of terrestrial winter avifauna in North America containing a total of 227 species. We examine the accuracy of space-for-time substitution and assess causal associations between community attributes and observed changes in annual temperature using a longitudinal study design. Annual temperature and all three community attributes increased over time. The trends for the three community attributes differed significantly from the spatially derived predictions, although richness showed broad congruence. Correlations with trends in temperature were found with richness and body mass. In the face of rapid climate change, applying space-for-time substitution as a predictive tool could be problematic with communities developing patterns not reflected by spatial ecological associations.
Journal Article
Convergence of broad-scale migration strategies in terrestrial birds
by
La Sorte, Frank A.
,
Kelling, Steve
,
Hochachka, Wesley M.
in
Africa
,
Animal Migration - physiology
,
Animals
2016
Migration is a common strategy used by birds that breed in seasonal environments. Selection for greater migration efficiency is likely to be stronger for terrestrial species whose migration strategies require non-stop transoceanic crossings. If multiple species use the same transoceanic flyway, then we expect the migration strategies of these species to converge geographically towards the most optimal solution. We test this by examining population-level migration trajectories within the Western Hemisphere for 118 migratory species using occurrence information from eBird. Geographical convergence of migration strategies was evident within specific terrestrial regions where geomorphological features such as mountains or isthmuses constrained overland migration. Convergence was also evident for transoceanic migrants that crossed the Gulf of Mexico or Atlantic Ocean. Here, annual population-level movements were characterized by clockwise looped trajectories, which resulted in faster but more circuitous journeys in the spring and more direct journeys in the autumn. These findings suggest that the unique constraints and requirements associated with transoceanic migration have promoted the spatial convergence of migration strategies. The combination of seasonal atmospheric and environmental conditions that has facilitated the use of similar broad-scale migration strategies may be especially prone to disruption under climate and land-use change.
Journal Article
Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves?
by
Gerbracht, Jeff
,
Wong, Weng-Keen
,
Moore, Travis
in
Accumulation
,
Analysis
,
Animal Distribution
2015
Volunteers are increasingly being recruited into citizen science projects to collect observations for scientific studies. An additional goal of these projects is to engage and educate these volunteers. Thus, there are few barriers to participation resulting in volunteer observers with varying ability to complete the project's tasks. To improve the quality of a citizen science project's outcomes it would be useful to account for inter-observer variation, and to assess the rarely tested presumption that participating in a citizen science projects results in volunteers becoming better observers. Here we present a method for indexing observer variability based on the data routinely submitted by observers participating in the citizen science project eBird, a broad-scale monitoring project in which observers collect and submit lists of the bird species observed while birding. Our method for indexing observer variability uses species accumulation curves, lines that describe how the total number of species reported increase with increasing time spent in collecting observations. We find that differences in species accumulation curves among observers equates to higher rates of species accumulation, particularly for harder-to-identify species, and reveals increased species accumulation rates with continued participation. We suggest that these properties of our analysis provide a measure of observer skill, and that the potential to derive post-hoc data-derived measurements of participant ability should be more widely explored by analysts of data from citizen science projects. We see the potential for inferential results from analyses of citizen science data to be improved by accounting for observer skill.
Journal Article
Citizen-science data provides new insight into annual and seasonal variation in migration patterns
by
Powers, Donald R
,
Graham, Catherine H
,
Supp, S. R
in
Animal behavior
,
Annual variations
,
Archilochus alexandri
2015
Current rates of global environmental and climate change pose potential challenges for migratory species that must cope with or adapt to new conditions and different rates of change across broad spatial scales throughout their annual life cycle. North American migratory hummingbirds may be especially sensitive to changes in environment and climate due to their extremely small body size, high metabolic rates, and dependence on nectar as a main resource. We used occurrence information from the eBird citizen-science database to track migratory movements of five North American hummingbird species (
Archilochus alexandri
,
A. colubris
,
Selasphorus calliope
,
S. platycercus
, and
S. rufus
) across 6 years (2008-2013) at a daily temporal resolution to describe annual and seasonal variation in migration patterns. Our findings suggest that the timing of the onset of spring migration generally varies less than the arrival on the wintering grounds. Species follow similar routes across years, but exhibit more variation in daily longitude than latitude. Long distance migrants generally had less annual variation in geographic location and timing than shorter distance migrants. Our study is among the first to examine variation in migration routes and timing for hummingbirds, but more work is needed to understand the capacity of these species to respond to different rates of environmental change along their migratory routes.
Journal Article