Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34
result(s) for
"Laarmann, Tim"
Sort by:
XUV fluorescence as a probe of laser-induced helium nanoplasma dynamics
by
Namboodiri, Mahesh
,
Przystawik, Andreas
,
Sumfleth, Malte
in
Broadband
,
Energy
,
Energy absorption
2023
XUV fluorescence spectroscopy provides information on energy absorption and dissipation processes taking place in the interaction of helium clusters with intense femtosecond laser pulses. The present experimental results complement the physical picture derived from previous electron and ion spectroscopic studies of the generated helium nanoplasma. Here, the broadband XUV fluorescence emission from high-lying Rydberg states that covers the spectral region from 6 p → 1 s at 53.0 eV all the way to photon energies corresponding to the ionization potential of He + ions at 54.4 eV is observed directly. The cluster size-dependent population of these states in the expanding nanoplasma follows the well-known bottleneck model. The results support previous findings and highlight the important role of Rydberg states in the energetics and dynamics of laser-generated nanoplasma.
Journal Article
Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser
by
Usenko, Sergey
,
Jakob, Markus Alexander
,
Przystawik, Andreas
in
132/124
,
140/125
,
639/766/400/1103
2017
Light-phase-sensitive techniques, such as coherent multidimensional spectroscopy, are well-established in a broad spectral range, already spanning from radio-frequencies in nuclear magnetic resonance spectroscopy to visible and ultraviolet wavelengths in nonlinear optics with table-top lasers. In these cases, the ability to tailor the phases of electromagnetic waves with high precision is essential. Here we achieve phase control of extreme-ultraviolet pulses from a free-electron laser (FEL) on the attosecond timescale in a Michelson-type all-reflective interferometric autocorrelator. By varying the relative phase of the generated pulse replicas with sub-cycle precision we observe the field interference, that is, the light-wave oscillation with a period of 129 as. The successful transfer of a powerful optical method towards short-wavelength FEL science and technology paves the way towards utilization of advanced nonlinear methodologies even at partially coherent soft X-ray FEL sources that rely on self-amplified spontaneous emission.
Phase-sensitive measurements are important to gain insights of light-matter interactions and require phase-controlled pulses. Here the authors demonstrate the phase control and interferometric autocorrelation on a free electron laser using SASE pulse pair created with a split and delay unit.
Journal Article
Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses
2018
We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.
Journal Article
Femtosecond dynamics of correlated many-body states in C60 fullerenes
by
Lazzarino, Leslie L
,
Usenko, Sergey
,
Berakdar, Jamal
in
32.80.Rm
,
33.20.Lg
,
Buckminsterfullerene
2016
Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C60 by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of τ el = 10 − 3 + 5 fs. Energy dissipation towards nuclear degrees of freedom is studied with time-resolved techniques. The evaluation of the nonlinear autocorrelation trace gives a characteristic time constant of τ vib = 400 100 fs for the exponential decay. In line with the experiment, the observed transient dynamics is explained theoretically by nonadiabatic (vibronic) couplings involving the correlated electronic, the nuclear degrees of freedom (accounting for the Herzberg-Teller coupling), and their interplay.
Journal Article
Mapping few-femtosecond slices of ultra-relativistic electron bunches
2017
Free-electron lasers are unique sources of intense and ultra-short x-ray pulses that led to major scientific breakthroughs across disciplines from matter to materials and life sciences. The essential element of these devices are micrometer-sized electron bunches with high peak currents, low energy spread, and low emittance. Advanced FEL concepts such as seeded amplifiers rely on the capability of analyzing and controlling the electron beam properties with few-femtosecond time resolution. One major challenge is to extract tomographic slice parameters instead of projected electron beam properties. Here, we demonstrate that a radio-frequency deflector in combination with a dipole spectrometer not only allows for single-shot extraction of a seeded FEL pulse profile, but also provides information on the electron slice emittance and energy spread. The seeded FEL power profile can be directly related to the derived slice emittance as a function of intra-bunch coordinate with a resolution down to a few femtoseconds.
Journal Article
Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy
2022
In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of
(
−
0.3
±
0.1
)
π
≤
ϕ
≤
(
0.1
±
0.2
)
π and
18.2
−
1.4
+
1.7
≤
T
≤
23.9
−
1.1
+
1.2 fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.
Journal Article
Split-And-Delay Unit for FEL Interferometry in the XUV Spectral Range
by
Usenko, Sergey
,
Przystawik, Andreas
,
Haunhorst, Christian
in
Experiments
,
Interferometry
,
Light
2017
In this work we present a reflective split-and-delay unit (SDU) developed for interferometric time-resolved experiments utilizing an (extreme ultraviolet) XUV pump–XUV probe scheme with focused free-electron laser beams. The developed SDU overcomes limitations for phase-resolved measurements inherent to conventional two-element split mirrors by a special design using two reflective lamellar gratings. The gratings produce a high-contrast interference signal controlled by the grating displacement in every diffraction order. The orders are separated in the focal plane of the focusing optics, which enables one to avoid phase averaging by spatially selective detection of a single interference state of the two light fields. Interferometry requires a precise relative phase control of the light fields, which presents a challenge at short wavelengths. In our setup the phase delay is determined by an in-vacuum white light interferometer (WLI) that monitors the surface profile of the SDU in real time and thus measures the delay for each laser shot. The precision of the WLI is 1 nm as determined by optical laser interferometry. In the presented experimental geometry it corresponds to a time delay accuracy of 3 as, which enables phase-resolved XUV pump–XUV probe experiments at free-electron laser (FEL) repetition rates up to 60 Hz.
Journal Article
Strong-field quantum control in the extreme ultraviolet domain using pulse shaping
2024
Tailored light–matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency
1
,
2
, with applications ranging from quantum information to photochemistry
3
,
4
,
5
,
6
–
7
. Although strong light–matter interactions are readily induced at the valence electron level using long-wavelength radiation
8
, comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states
9
,
10
. However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain. Here, exploiting pulse shaping of the seeded free-electron laser (FEL) FERMI, we demonstrate the strong-field quantum control of ultrafast Rabi dynamics in helium atoms with high fidelity. Our approach reveals a strong dressing of the ionization continuum, otherwise elusive to experimental observables. The latter is exploited to achieve control of the total ionization rate, with prospective applications in many XUV and soft X-ray experiments. Leveraging recent advances in intense few-femtosecond to attosecond XUV to soft X-ray light sources, our results open an avenue to the efficient manipulation and selective control of core electron processes and electron correlation phenomena in real time.
Ultrafast quantum control of helium atoms is obtained by shaping the extreme ultraviolet pulses generated by a seeded free-electron laser.
Journal Article
Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses
2020
The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths.
Light pulses with controllable parameters are desired for studying the fundamental properties of matter. Here the authors generate and use phase-manipulated and highly time-stable XUV pulse pairs to probe the coherent evolution and dephasing of XUV electronic coherences in helium and argon.
Journal Article
Strong-field quantum control in the extreme ultraviolet domainusing pulse shaping
by
Li, Yilin
,
Plekan, Oksana
,
Giannessi, Luca
in
Atom and Molecular Physics and Optics
,
Atom- och molekylfysik och optik
2024
Tailored light–matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency1,2, with applications ranging from quantum information to photochemistry3, 4, 5, 6–7. Although strong light–matter interactions are readily induced at the valence electron level using long-wavelength radiation8, comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states9,10. However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain. Here, exploiting pulse shaping of the seeded free-electron laser (FEL) FERMI, we demonstrate the strong-field quantum control of ultrafast Rabi dynamics in helium atoms with high fidelity. Our approach reveals a strong dressing of the ionization continuum, otherwise elusive to experimental observables. The latter is exploited to achieve control of the total ionization rate, with prospective applications in many XUV and soft X-ray experiments. Leveraging recent advances in intense few-femtosecond to attosecond XUV to soft X-ray light sources, our results open an avenue to the efficient manipulation and selective control of core electron processes and electron correlation phenomena in real time.
Journal Article