Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Labeda, David P"
Sort by:
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes
Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed “genome mining” as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N5-hydroxyarginine; valinophos, an N-acetyl L-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.
Diversity and abundance of phosphonate biosynthetic genes in nature
Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ca. 5% of sequenced genomes and 7% of genome equivalents in metagenomic datasets carrying pepM. Similarly, we detected the pepM gene in ca. 5% of random actinomycete isolates. The pepM-containing gene neighborhoods from twenty-five of these isolates were cloned, sequenced and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, while hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both common and diverse in nature, suggesting that the role of these molecules in a phosphorus-limited biosphere may be more important than commonly recognized.
Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957
A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9 T , was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces . 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis . Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9 T is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448 T . The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9 T (=NCIMB 14965 T =NRRL B65268 T ). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given.
roadmap for natural product discovery based on large-scale genomics and metabolomics
Actinobacteria encode a wealth of natural product biosynthetic gene clusters, whose systematic study is complicated by numerous repetitive motifs. By combining several metrics, we developed a method for the global classification of these gene clusters into families (GCFs) and analyzed the biosynthetic capacity of Actinobacteria in 830 genome sequences, including 344 obtained for this project. The GCF network, comprising 11,422 gene clusters grouped into 4,122 GCFs, was validated in hundreds of strains by correlating confident mass spectrometric detection of known small molecules with the presence or absence of their established biosynthetic gene clusters. The method also linked previously unassigned GCFs to known natural products, an approach that will enable de novo, bioassay-free discovery of new natural products using large data sets. Extrapolation from the 830-genome data set reveals that Actinobacteria encode hundreds of thousands of future drug leads, and the strong correlation between phylogeny and GCFs frames a roadmap to efficiently access them.
Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS Culture Collection (NRRL) using multi-locus sequence analysis
Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 strains identified as Streptomyces scabiei deposited at various times since the 1950s and these were subjected to multi-locus sequence analysis utilising partial sequences of the house-keeping genes atpD, gyrB, recA, rpoB and trpB. Phylogenetic analyses confirmed the identity of 17 of these strains as Streptomyces scabiei, 9 of the strains as the potato-pathogenic species Streptomyces europaeiscabiei and 6 strains as potentially new phytopathogenic species. Of the 16 other strains, 12 were identified as members of previously described non-pathogenic Streptomyces species while the remaining 4 strains may represent heretofore unrecognised non-pathogenic species. This study demonstrated the value of this technique for the relatively rapid, simple and sensitive molecular identification of Streptomyces strains held in culture collections.
Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis
The family Streptomycetaceae , notably species in the genus Streptomyces , have long been the subject of investigation due to their well-known ability to produce secondary metabolites. The emergence of drug resistant pathogens and the relative ease of producing genome sequences has renewed the importance of Streptomyces as producers of new natural products and resulted in revived efforts in isolating and describing strains from novel environments. A previous large study of the phylogeny in the Streptomycetaceae based on 16S rRNA gene sequences provided a useful framework for the relationships among species, but did not always have sufficient resolution to provide definitive identification. Multi-locus sequence analysis of 5 house-keeping genes has been shown to provide improved taxonomic resolution of Streptomyces species in a number of previous reports so a comprehensive study was undertaken to evaluate evolutionary relationships among species within the family Streptomycetaceae where type strains are available in the ARS Culture Collection or genome sequences are available in GenBank. The results of the analysis supported the distinctiveness of Kitasatospora and Streptacidiphilus as validly named genera since they cluster outside of the phylogenetic radiation of the genus Streptomyces . There is also support for the transfer of a number of Streptomyces species to the genus Kitasatospora as well for reducing at least 31 species clusters to a single taxon. The multi-locus sequence database resulting from the study is a useful tool for identification of new isolates and the phylogenetic analysis presented also provides a road map for planning future genome sequencing efforts in the Streptomycetaceae .
Quinovosamycins: new tunicamycin-type antibiotics in which the α, β-1″,11′-linked N-acetylglucosamine residue is replaced by N-acetylquinovosamine
Tunicamycins (TUN) are potent inhibitors of polyprenyl phosphate N -acetylhexosamine 1-phosphate transferases (PPHP), including essential eukaryotic GPT enzymes and bacterial HexNAc 1-P translocases. Hence, TUN blocks the formation of eukaryotic N -glycoproteins and the assembly of bacterial call wall polysaccharides. The genetic requirement for TUN production is well-established. Using two genes unique to the TUN pathway ( tunB and tunD ) as probes we identified four new prospective TUN-producing strains. Chemical analysis showed that one strain, Streptomyces niger NRRL B-3857, produces TUN plus new compounds, named quinovosamycins (QVMs). QVMs are structurally akin to TUN, but uniquely in the 1″,11′-HexNAc sugar head group, which is invariably d -GlcNAc for the known TUN, but is d -QuiNAc for the QVM. Surprisingly, this modification has only a minor effect on either the inhibitory or antimicrobial properties of QVM and TUN. These findings have unexpected consequences for TUN/QVM biosynthesis, and for the specificity of the PPHP enzyme family.
Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees
A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34 T , which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces . Analysis of 16S rRNA gene sequences showed that strain C34 T formed a distinct phyletic line in the Streptomyces gene tree that was very loosely associated with the type strains of several Streptomyces species. Multilocus sequence analysis based on five house-keeping gene alleles underpinned the separation of strain C34 T from all of its nearest phylogenetic neighbours, apart from Streptomyces chiangmaiensis TA-1 T and Streptomyces hyderabadensis OU-40 T which are not currently in the MLSA database. Strain C34 T was distinguished readily from the S. chiangmaiensis and S. hyderabadensis strains by using a combination of cultural and phenotypic data. Consequently, strain C34 T is considered to represent a new species of the genus Streptomyces for which the name Streptomyces leeuwenhoekii sp. nov. is proposed. The type strain is C34 T (= DSM 42122 T  = NRRL B-24963 T ). Analysis of the whole-genome sequence of S. leeuwenhoekii , with 6,780 predicted open reading frames and a total genome size of around 7.86 Mb, revealed a high potential for natural product biosynthesis.
Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958
A polyphasic study was undertaken to establish the taxonomic status of Streptomyces strains isolated from hyper-arid Atacama Desert soils. Analysis of the 16S rRNA gene sequences of the isolates showed that they formed a well-defined lineage that was loosely associated with the type strains of several Streptomyces species. Multi-locus sequence analysis based on five housekeeping gene alleles showed that the strains form a homogeneous taxon that is closely related to the type strains of Streptomyces ghanaensis and Streptomyces viridosporus . Representative isolates were shown to have chemotaxonomic and morphological properties consistent with their classification in the genus Streptomyces. The isolates have many phenotypic features in common, some of which distinguish them from S. ghanaensis NRRL B-12104 T , their near phylogenetic neighbour. On the basis of these genotypic and phenotypic data it is proposed that the isolates be recognised as a new species within the genus Streptomyces , named Streptomyces asenjonii sp. nov. The type strain of the species is KNN35.1b T (NCIMB 15082 T  = NRRL B-65050 T ). Some of the isolates, including the type strain, showed antibacterial activity in standard plug assays. In addition, MLSA, average nucleotide identity and phenotypic data show that the type strains of S. ghanaensis and S. viridosporus belong to the same species. Consequently, it is proposed that the former be recognised as a heterotypic synonym of the latter and an emended description is given for S. viridosporus .
Entomopathogen ID: a curated sequence resource for entomopathogenic fungi
We report the development of a publicly accessible, curated nucleotide sequence database of hypocrealean entomopathogenic fungi. The goal is to provide a platform for users to easily access sequence data from taxonomic reference strains. The database can be used to accurately identify unknown entomopathogenic fungi based on sequence data for a variety of phylogenetically informative loci. The database provides full multi-locus sequence alignment capabilities. The initial release contains data compiled for 525 strains covering the phylogenetic diversity of three important entomopathogenic families: Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae. Furthermore, Entomopathogen ID can be expanded to other fungal clades of insect pathogens, as sequence data becomes available. The database will allow isolate characterisation and evolutionary analyses. We contend that this freely available, web-accessible database will facilitate the broader community to accurately identify fungal entomopathogens, which will allow users to communicate research results more effectively.