Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Labuda, Roman"
Sort by:
Fusarium sporotrichioides Produces Two HT-2-α-Glucosides on Rice
Fusarium is a genus that mostly consists of plant pathogenic fungi which are able to produce a broad range of toxic secondary metabolites. In this study, we focus on a type A trichothecene-producing isolate (15-39) of Fusarium sporotrichioides from Lower Austria. We assessed the secondary metabolite profile and optimized the toxin production conditions on autoclaved rice and found that in addition to large amounts of T-2 and HT-2 toxins, this strain was able to produce HT-2-glucoside. The optimal conditions for the production of T-2 toxin, HT-2 toxin, and HT-2-glucoside on autoclaved rice were incubation at 12 °C under constant light for four weeks, darkness at 30 °C for two weeks, and constant light for three weeks at 20 °C, respectively. The HT-2-glucoside was purified, and the structure elucidation by NMR revealed a mixture of two alpha-glucosides, presumably HT-2-3-O-alpha-glucoside and HT-2-4-O-alpha-glucoside. The efforts to separate the two compounds by HPLC were unsuccessful. No hydrolysis was observed with two the alpha-glucosidases or with human salivary amylase and Saccharomyces cerevisiae maltase. We propose that the two HT-2-alpha-glucosides are not formed by a glucosyltransferase as they are in plants, but by a trans-glycosylating alpha-glucosidase expressed by the fungus on the starch-containing rice medium.
Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry
This paper describes the application of a previously published multi-mycotoxin method for food and feed matrices based on liquid chromatography/electrospray ionization-tandem mass spectrometry (HPLC/ESI-MS/MS) to the analysis of microbial metabolites in indoor matrices. The range of investigated analytes has been extended by 99 fungal and bacterial metabolites to cover now 186 compounds overall. The method is based on a single extraction step using an acidified acetonitrile/water mixture (which has been determined to be preferable to methanol and ethyl acetate) followed by analysis of the diluted crude extract. The analytical signal of one third of the investigated analytes was reduced by more than 50% due to matrix effects in a spiked extract of house dust, whereas the other investigated materials were less critical in that aspect. For determination of method performance characteristics, a spiked reference material for house dust was chosen as a model sample for an extremely complex matrix. With few exceptions, coefficients of variation of the whole procedure of <10% and limits of detection of <50 µg kg⁻¹ were obtained. The apparent recoveries were below 50% for half of the investigated analytes due to incomplete extraction and/or detection-related matrix effects. The application of the method to 14 samples from damp buildings revealed the presence of 20 different analytes at concentrations of up to 130 mg kg⁻¹. Most of these compounds have never been identified before in real-world samples, although they are known to be produced by indoor-relevant fungi. This underlines the great value of the described method for the on-site determination of microbial metabolites. [graphic removed]
Chemical composition of anti-microbially active fractions derived from extract of filamentous fungus Keratinophyton Lemmensii including three novel bioactive compounds
Screening for new bioactive microbial metabolites, we found a novel okaramine derivative, for which we propose the trivial name lemmokaramine, as well as two already known okaramine congeners – okaramine H and okaramine J - responsible for antimicrobial activity of the recently described microscopic filamentous fungus, Keratinophyton lemmensii BiMM-F76 (= CCF 6359). In addition, two novel substances, a new cyclohexyl denominated lemmensihexol and a new tetrahydroxypyrane denominated lemmensipyrane, were purified and characterized. The compounds were isolated from the culture extract of the fungus grown on modified yeast extract sucrose medium by means of flash chromatography followed by preparative HPLC. The chemical structures were elucidated by NMR and LC-MS. The new okaramine (lemmokaramine) exerted antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts and fungi and anticancer activity against different mammalian cell lines (Caco-2, HCT116, HT29, SW480, MCM G1, and MCM DLN). Furthermore, we found a significant antioxidant effect of lemmokaramine following H 2 O 2 treatment indicated by activation of the Nrf2 pathway. This is the first report describing analysis and structural elucidation of bioactive metabolites for the onygenalean genus Keratinophyton .
Two novel members of Onygenales, Keratinophyton kautmanovae and K. keniense spp. nov. from soil
Two new Keratinophyton species, K. kautmanovae sp. nov. and K. keniense sp. nov., isolated from soil samples originating from two different geographical and environmental locations (Africa and Europe) are described and illustrated. Phylogenetically informative sequences obtained from the internal transcribed spacer (ITS) region and the nuclear large subunit (LSU) rDNA, as well as their unique phenotype, fully support novelty of these two fungi for this genus. Based on ITS and LSU combined phylogeny, both taxa are resolved in a cluster with eight accepted species, including K . alvearium , K . chongqingense , K . hubeiense , K. durum , K. lemmensii , K . siglerae , K. submersum , and K. sichuanense . The new taxon, K. kautmanovae , is characterized by clavate, smooth to coarsely verrucose conidia, absence of arthroconidia, slow growth at 25 °C, and no growth at 30 °C, while K. keniense is morphologically unique with a high diversity of conidial shapes (clavate, filiform, globose, cymbiform and rhomboid). Both species are described based on their asexual, a chrysosporium-like morph. While the majority of hitherto described Keratinophyton taxa came from Europe, India and China, the new species K. keniense represents the first reported taxonomic novelty for this genus from Africa.
Luteapyrone, a Novel ƴ-Pyrone Isolated from the Filamentous Fungus Metapochonia lutea
In the process of screening for new bioactive microbial metabolites we found a novel ƴ-pyrone derivative for which we propose the trivial name luteapyrone, in a recently described microscopic filamentous fungus, Metapochonia lutea BiMM-F96/DF4. The compound was isolated from the culture extract of the fungus grown on modified yeast extract sucrose medium by means of flash chromatography followed by preparative HPLC. The chemical structure was elucidated by NMR and LC-MS. The new compound was found to be non-cytotoxic against three mammalian cell lines (HEK 263, KB-3.1 and Caco-2). Similarly, no antimicrobial activity was observed in tested microorganisms (gram positive and negative bacteria, yeast and fungi).
Molecular systematics of Keratinophyton: the inclusion of species formerly referred to Chrysosporium and description of four new species
Four new Keratinophyton species ( Ascomycota , Pezizomycotina , Onygenales ), K. gollerae , K. lemmensii , K. straussii, and K. wagneri , isolated from soil samples originating from Europe (Austria, Italy, and Slovakia) are described and illustrated. The new taxa are well supported by phylogenetic analysis of the internal transcribed spacer region (ITS) region, the combined data analysis of ITS and the nuclear large subunit (LSU) rDNA, and their phenotype. Based on ITS phylogeny, within the Keratinophyton clade, K . lemmensii is clustered with K . durum, K . hubeiense , K . submersum, and K . siglerae, while K . gollerae , K . straussii and K . wagneri are resolved in a separate terminal cluster. All four new species can be well distinguished from other species in the genus based on phenotype characteristics alone. Ten new combinations are proposed for Chrysosporium species which are resolved in the monophyletic Keratinophyton clade. A new key to the recognized species is provided herein.
Strain-Dependent Variability in Ochratoxin A Production by Aspergillus spp. Under Different In Vitro Cultivation Conditions
The aim of this study was to investigate differences in the dynamics of ochratoxin A (OTA) production by various Aspergillus isolates under different cultivation conditions. Nine strains representing A. westerdijkiae, A. ochraceus, A. sulphureus, A. carbonarius, and A. albertensis were tested on malt extract agar (MEA), Czapek yeast extract agar (CYA), potato dextrose agar (PDA), and yeast extract sucrose agar (YES). Cultivations were performed at 18 °C, 22 °C, 25 °C, and 30 °C, and OTA production was monitored on the 6th, 10th, 14th, 21st, and 30th days using HPLC analysis. OTA yields strongly depended on the producing strain, with significant variability even among isolates of the same species. The most productive strain was A. ochraceus from cereals with a maximum concentration of 848 µg g−1 OTA, followed by two isolates of A. westerdijkiae from grapes of Slovak origin (591 and 479 µg g−1), and A. sulphureus from soil (546 µg g−1). In contrast, A. carbonarius strains showed the weakest OTA production. Across media, YES supported the highest toxin levels, whereas the most favourable cultivation temperatures were 18 °C and 25 °C. Each strain reached its production maximum at different time points, highlighting the strain-specific nature of OTA biosynthesis.
Pseudopithomyces chartarum associated with wheat seeds in Argentina, pathogenicity and evaluation of toxigenic ability
Argentina is one of the top 10 world producers and exporters of wheat. In routine surveys of wheat ( Triticum aestivum L.) in Buenos Aires Province, Argentina, a new disease was observed in 2012 on seeds of wheat cv. Buck Meteoro. Symptomatic grains (black points) and leaves (chlorosis and spots) were collected during the spring of that year. The objectives of the present study were to identify the causal agent, to investigate its pathogenicity in relation to nine wheat cultivars and to identify the secondary metabolites produced by fungus. Symptomatic grains were plated on potato dextrose agar (PDA). Morphological characterization of colonies and sequencing of the ITS region after DNA extraction identified it as Pseudopithomyces chartarum . For pathogenicity tests, two different isolates, P221 and P224, were inoculated on seedlings of nine wheat cultivars, which showed different disease symptoms, % of grain germination (GG), % of grain discoloration (GD) and % of weak seedlings (WS), suggesting different levels of response against Pseudopithomyces chartarum. Particularly B. Meteoro, Buck Guapo and Klein Proteo cultivars demonstrated major infection tolerance for GD and WS. In contrast, Sy 100 and Klein Pantera were most affected showing weakness, chlorosis, or reduced length of coleoptile, and 50% of necrotic symptoms. Pseudopithomyces chartarum isolates produced secondary metabolites including alternariol, alternariol mono-methyl ether, altertoxin I and altertoxine II. The fungus is a new pathogen of wheat in Argentina that can cause diseases on different cultivars as well as produce mycotoxins.
Saksenaea dorisiae sp. nov., a New Opportunistic Pathogenic Fungus from Europe
A new species, Saksenaea dorisiae (Mucoromycotina, Mucorales), isolated from a water sample originating from a private well in Manastirica, Petrovac, in the Republic of Serbia (Europe), is described and illustrated. The new taxon is well supported by multilocus phylogenetic analysis that included the internal transcribed spacer (ITS) region, domains D1 and D2 of the 28S rRNA gene (LSU), and translation elongation factor-1α gene (tef-1α), and it is resolved in a clade with S. oblongispora and S. trapezispora. This fungus is characterized by its moderately slow growth at 15 and 37°C, sparse rhizoids, conical-shaped sporangia, and short-cylindrical sporangiospores. Saksenaea dorisiae is a member of the opportunistic pathogenic genus often involved in severe human and animal mucormycoses encountered in tropical and subtropical regions. Despite its sensitivity to several conventional antifungals (terbinafine and ciclopirox), the fungus can potentially evoke clinically challenging infections. This is the first novel taxon of the genus Saksenaea described from the moderately continental climate area of Europe.
Polyphasic Approach Utilized for the Identification of Two New Toxigenic Members of Penicillium Section Exilicaulis, P. krskae and P. silybi spp. nov
Two new species, Penicillium krskae (isolated from the air as a lab contaminant in Tulln (Austria, EU)) and Penicillium silybi (isolated as an endophyte from asymptomatic milk thistle (Silybum marianum) stems from Josephine County (Oregon, USA)) are described. The new taxa are well supported by phenotypic (especially conidial ornamentation under SEM, production of red exudate and red pigments), physiological (growth at 37 °C, response to cycloheximide and CREA), chemotaxonomic (production of specific extrolites), and multilocus phylogenetic analysis using RNA-polymerase II second largest subunit (RPB2), partial tubulin (benA), and calmodulin (CaM). Both new taxa are resolved within the section Exilicaulis in series Restricta and show phylogenetic affiliation to P. restrictum sensu stricto. They produce a large spectrum of toxic anthraquinoid pigments, namely, monomeric anthraquinones related to emodic and chloremodic acids and other interesting bioactive extrolites (i.e., endocrocin, paxilline, pestalotin, and 7-hydroxypestalotin). Of note, two bianthraquinones (i.e., skyrin and oxyskyrin) were detected in a culture extract of P. silybi. Two new chloroemodic acid derivatives (2-chloro-isorhodoptilometrin and 2-chloro-desmethyldermoquinone) isolated from the exudate of P. krskae ex-type culture were analyzed by nuclear magnetic resonance (NMR) and liquid chromatography–mass spectrometry (LC–MS).