Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
54 result(s) for "Lacerda, Ana P M"
Sort by:
Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn's disease
Background As long-term treatment with antitumour necrosis factor (TNF) drugs becomes accepted practice, the risk assessment requires an understanding of anti-TNF long-term safety. Registry safety data in rheumatoid arthritis (RA) are available, but these patients may not be monitored as closely as patients in a clinical trial. Cross-indication safety reviews of available anti-TNF agents are limited. Objective To analyse the long-term safety of adalimumab treatment. Methods This analysis included 23 458 patients exposed to adalimumab in 71 global clinical trials in RA, juvenile idiopathic arthritis, ankylosing spondylitis (AS), psoriatic arthritis, psoriasis (Ps) and Crohn's disease (CD). Events per 100 patient-years were calculated using events reported after the first dose through 70 days after the last dose. Standardised incidence rates for malignancies were calculated using a National Cancer Institute database. Standardised death rates were calculated using WHO data. Results The most frequently reported serious adverse events across indications were infections with greatest incidence in RA and CD trials. Overall malignancy rates for adalimumab-treated patients were as expected for the general population; the incidence of lymphoma was increased in patients with RA, but within the range expected in RA without anti-TNF therapy; non-melanoma skin cancer incidence was raised in RA, Ps and CD. In all indications, death rates were lower than, or equivalent to, those expected in the general population. Conclusions Analysis of adverse events of interest through nearly 12 years of adalimumab exposure in clinical trials across indications demonstrated individual differences in rates by disease populations, no new safety signals and a safety profile consistent with known information about the anti-TNF class.
Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses
Raffinose family oligosaccharides (RFOs) are implicated in plant regulatory mechanisms of abiotic stresses tolerance and, despite their antinutritional proprieties in grain legumes, little information is available about the enzymes involved in RFO metabolism in Fabaceae species. In the present study, the systematic survey of legume proteins belonging to five key enzymes involved in the metabolism of RFOs (galactinol synthase, raffinose synthase, stachyose synthase, alpha-galactosidase, and beta-fructofuranosidase) identified 28 coding-genes in Arachis duranensis and 31 in A. ipaënsis . Their phylogenetic relationships, gene structures, protein domains, and chromosome distribution patterns were also determined. Based on the expression profiling of these genes under water deficit treatments, a galactinol synthase candidate gene ( AdGolS3 ) was identified in A. duranensis . Transgenic Arabidopsis plants overexpressing AdGolS3 exhibited increased levels of raffinose and reduced stress symptoms under drought, osmotic, and salt stresses. Metabolite and expression profiling suggested that AdGolS3 overexpression was associated with fewer metabolic perturbations under drought stress, together with better protection against oxidative damage. Overall, this study enabled the identification of a promising GolS candidate gene for metabolic engineering of sugars to improve abiotic stress tolerance in crops, whilst also contributing to the understanding of RFO metabolism in legume species.
Cardiorespiratory and metabolic responses and reference equation validation to predict peak oxygen uptake for the incremental shuttle waking test in adolescent boys
Previous studies speculated that the Incremental Shuttle Walking Test (ISWT) is a maximal test in children and adolescents, however comparison between ISWT with cardiopulmonary exercise test has not yet performed. Furthermore, there is no regression equation available in the current literature to predict oxygen peak consumption (VO2 peak) in this population. This study aimed to assesses and correlate the cardiorespiratory responses of the ISWT with the cardiopulmonary exercise (CEPT) and to develop and validate a regression equation to predict VO2 peak in healthy sedentary adolescent boys. Forty-one participants were included in the study. In the first stage, the VO2 peak, respiratory exchange ratio (R peak), heart rate max (HR max) and percentage of predicted HR max (% predicted HR max) were evaluated in CEPT and ISWT (n = 26). Second, an equation was developed (n = 29) to predict VO2 peak. In both phases, the VO2 peak, respiratory exchange ratio R and hearth rate (HR) were evaluated. In the third stage, the validation equation was performed by another 12 participants. Similar results in VO2 peak (P>0.05), R peak (P>0.05) and predicted maximum HR (P>0.05) were obtained between the ISWT and CEPT. Both tests showed moderate significant correlations of VO2 peak (r = 0.44, P = 0.002) e R peak (r = -0.53, P < 0.01), as well as the agreement of these measurements by Bland-Altman analysis (VO2 peak, bias = -0.13; R peak, bias = 0.0). Distance walked was the variable that explained 42.5% (R2 = 0.425, p = 0.0001) of the variance in VO2 peak. The equation was VO2 peak (predicted) = 20.94 + (0.02 x distance walked). The results obtained by the equation were not significantly different compared to the values obtained by the gas analyzer and the Bland-Altman analysis showed agreement (bias = 1.6). The ISWT produced maximal cardiorespiratory responses comparable to the CEPT, and the developed equation showed viability for the prediction of VO2 peak in healthy sedentary adolescent boys.
Rosettes integrity protects Plasmodium vivax of being phagocytized
Plasmodium vivax is the most prevalent cause of malaria outside of Africa. P. vivax biology and pathogenesis are still poorly understood. The role of one highly occurring phenotype in particular where infected reticulocytes cytoadhere to noninfected normocytes, forming rosettes, remains unknown. Here, using a range of ex vivo approaches, we showed that P. vivax rosetting rates were enhanced by plasma of infected patients and that total immunoglobulin M levels correlated with rosetting frequency. Moreover, rosetting rates were also correlated with parasitemia, IL-6 and IL-10 levels in infected patients. Transcriptomic analysis of peripheral leukocytes from P. vivax -infected patients with low or moderated rosetting rates identified differentially expressed genes related to human host phagocytosis pathway. In addition, phagocytosis assay showed that rosetting parasites were less phagocyted. Collectively, these results showed that rosette formation plays a role in host immune response by hampering leukocyte phagocytosis. Thus, these findings suggest that rosetting could be an effective P. vivax immune evasion strategy.
Diverse genomoviruses representing twenty-nine species identified associated with plants
Genomoviruses (family Genomoviridae) are circular single-stranded DNA viruses that have been mainly identified through metagenomics studies in a wide variety of samples from various environments. Here, we describe 98 genomes of genomoviruses found associated with members of 19 plant families from Australia, Brazil, France, South Africa and the USA. These 98 genomoviruses represent 29 species, 26 of which are new, in the genera Gemykolovirus (n = 37), Gemyduguivirus (n = 9), Gemygorvirus (n = 8), Gemykroznavirus (n = 6), Gemycircularvirus (n = 21) and Gemykibivirus (n = 17).
Can Corrole Dimers Be Good Photosensitizers to Kill Bacteria?
Corroles possess key photophysical and photochemical properties to be exploited as therapeutic agents in antimicrobial photodynamic therapy (aPDT). Herein, we present for the first time the antimicrobial efficiency of three corrole dimers and of the corresponding precursor against the Gram(+) bacterium Staphylococcus aureus. Additionally, to explore future clinical applications, the cytotoxicity of the most promising derivatives towards Vero cells was evaluated. The aPDT assays performed under white light irradiation (50 mW/cm2; light dose 450 J/cm2) and at a corrole concentration of 15 µM showed that some dimers were able to reduce 99.9999% of S. aureus strain (decrease of 5 log10 CFU/mL) and their photodynamic efficiency was dependent on position, type of linkage, and aggregation behavior. Under the same light conditions, the corrole precursor 1 demonstrated notable photodynamic efficiency, achieving total photoinactivation (>8.0 log10 CFU/mL reduction) after the same period of irradiation (light dose 450 J/cm2). No cytotoxicity was observed when Vero cells were exposed to corrole 1 and dimer 3 for 24 h according to ISO guidelines (ISO 10993-5) for in vitro cytotoxicity of medical devices. The results show that corrole dimers, dependent on their structures, can be considered good photosensitizers to kill Staphylococcus aureus.
Belantamab Mafodotin, Bortezomib, and Dexamethasone for Multiple Myeloma
Among patients with relapsed myeloma, median progression-free survival was approximately 3 years with a regimen including belantamab mafodotin, as compared with 13 months with a regimen including an anti-CD38 antibody.
Characterization of the complete mitogenome of Anopheles aquasalis, and phylogenetic divergences among Anopheles from diverse geographic zones
Whole mitogenome sequences (mtDNA) have been exploited for insect ecology studies, using them as molecular markers to reconstruct phylogenies, or to infer phylogeographic relationships and gene flow. Recent Anopheles phylogenomic studies have provided information regarding the time of deep lineage divergences within the genus. Here we report the complete 15,393 bp mtDNA sequences of Anopheles aquasalis, a Neotropical human malaria vector. When comparing its structure and base composition with other relevant and available anopheline mitogenomes, high similarity and conserved genomic features were observed. Furthermore, 22 mtDNA sequences comprising anopheline and Dipteran sibling species were analyzed to reconstruct phylogenies and estimate dates of divergence between taxa. Phylogenetic analysis using complete mtDNA sequences suggests that A. aquasalis diverged from the Anopheles albitarsis complex ~28 million years ago (MYA), and ~38 MYA from Anopheles darlingi. Bayesian analysis suggests that the most recent ancestor of Nyssorhynchus and Anopheles + Cellia was extant ~83 MYA, corroborating current estimates of ~79-100 MYA. Additional sampling and publication of African, Asian, and North American anopheline mitogenomes would improve the resolution of the Anopheles phylogeny and clarify early continental dispersal routes.
Plasmodium vivax AMA1: Implications of distinct haplotypes for immune response
In Brazil, Plasmodium vivax infection accounts for around 80% of malaria cases. This infection has a substantial impact on the productivity of the local population as the course of the disease is usually prolonged and the development of acquired immunity in endemic areas takes several years. The recent emergence of drug-resistant strains has intensified research on alternative control methods such as vaccines. There is currently no effective available vaccine against malaria; however, numerous candidates have been studied in the past several years. One of the leading candidates is apical membrane antigen 1 (AMA1). This protein is involved in the invasion of Apicomplexa parasites into host cells, participating in the formation of a moving junction. Understanding how the genetic diversity of an antigen influences the immune response is highly important for vaccine development. In this study, we analyzed the diversity of AMA1 from Brazilian P. vivax isolates and 19 haplotypes of P. vivax were found. Among those sequences, 33 nonsynonymous PvAMA1 amino acid sites were identified, whereas 20 of these sites were determined to be located in predicted B-cell epitopes. Nonsynonymous mutations were evaluated for their influence on the immune recognition of these antigens. Two distinct haplotypes, 5 and 16, were expressed and evaluated for reactivity in individuals from northern Brazil. Both PvAMA1 variants were reactive. Moreover, the IgG antibody response to these two PvAMA1 variants was analyzed in an exposed but noninfected population from a P. vivax endemic area. Interestingly, over 40% of this population had antibodies recognizing both variants. These results have implications for the design of a vaccine based on a polymorphic antigen.
The Role of Reactive Oxygen Species in Anopheles aquasalis Response to Plasmodium vivax Infection
Malaria affects millions of people worldwide and hundreds of thousands of people each year in Brazil. The mosquito Anopheles aquasalis is an important vector of Plasmodium vivax, the main human malaria parasite in the Americas. Reactive oxygen species (ROS) have been shown to have a role in insect innate immune responses as a potent pathogen-killing agent. We investigated the mechanisms of free radicals modulation after A. aquasalis infection with P. vivax. ROS metabolism was evaluated in the vector by studying expression and activity of three key detoxification enzymes, one catalase and two superoxide dismutases (SOD3A and SOD3B). Also, the involvement of free radicals in the mosquito immunity was measured by silencing the catalase gene followed by infection of A. aquasalis with P. vivax. Catalase, SOD3A and SOD3B expression in whole A. aquasalis were at the same levels of controls at 24 h and upregulated 36 h after ingestion of blood containing P. vivax. However, in the insect isolated midgut, the mRNA for these enzymes was not regulated by P. vivax infection, while catalase activity was reduced 24 h after the infectious meal. RNAi-mediated silencing of catalase reduced enzyme activity in the midgut, resulted in increased P. vivax infection and prevalence, and decreased bacterial load in the mosquito midgut. Our findings suggest that the interactions between A. aquasalis and P. vivax do not follow the model of ROS-induced parasite killing. It appears that P. vivax manipulates the mosquito detoxification system in order to allow its own development. This can be an indirect effect of fewer competitive bacteria present in the mosquito midgut caused by the increase of ROS after catalase silencing. These findings provide novel information on unique aspects of the main malaria parasite in the Americas interaction with one of its natural vectors.