Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Lagadec, Pierre"
Sort by:
The Reliability and Validity of Wearable Inertial Sensors Coupled with the Microsoft Kinect to Measure Shoulder Range-of-Motion
by
Lagadec, Pierre
,
Beshara, Peter
,
Chen, Judy F.
in
Accuracy
,
Biomechanical Phenomena
,
goniometry
2020
Background: Objective assessment of shoulder joint active range of motion (AROM) is critical to monitor patient progress after conservative or surgical intervention. Advancements in miniature devices have led researchers to validate inertial sensors to capture human movement. This study investigated the construct validity as well as intra- and inter-rater reliability of active shoulder mobility measurements using a coupled system of inertial sensors and the Microsoft Kinect (HumanTrak). Methods: 50 healthy participants with no history of shoulder pathology were tested bilaterally for fixed and free ROM: (1) shoulder flexion, and (2) abduction using HumanTrak and goniometry. The repeat testing of the standardised protocol was completed after seven days by two physiotherapists. Results: All HumanTrak shoulder movements demonstrated adequate reliability (intra-class correlation (ICC) ≥ 0.70). HumanTrak demonstrated higher intra-rater reliability (ICCs: 0.93 and 0.85) than goniometry (ICCs: 0.75 and 0.53) for measuring free shoulder flexion and abduction AROM, respectively. Similarly, HumanTrak demonstrated higher intra-rater reliability (ICCs: 0.81 and 0.94) than goniometry (ICCs: 0.70 and 0.93) for fixed flexion and abduction AROM, respectively. Construct validity between HumanTrak and goniometry was adequate except for free abduction. The differences between raters were predominately acceptable and below ±10°. Conclusions: These results indicated that the HumanTrak system is an objective, valid and reliable way to assess and track shoulder ROM.
Journal Article
A realistic elastic rod model for real-time simulation of minimally invasive vascular interventions
by
Lagadec, Pierre
,
Gould, Derek
,
Zhai, Jianhua
in
Artificial Intelligence
,
Blood vessels
,
Catheters
2010
Simulating intrinsic deformation behaviors of guidewire and catheters for interventional radiology (IR) procedures, such as minimally invasive vascular interventions is a challenging task. Especially real-time simulations for interactive training systems require not only the accuracy of guidewire manipulations, but also the efficiency of computations. The insertion of guidewires and catheters is an essential task for IR procedures and the success of these procedures depends on the accurate navigation of guidewires in complex 3D blood vessel structures to a clinical target, whilst avoiding complications or mistakes of damaging vital tissues and blood vessel walls. In this paper, a novel elastic model for modeling guidewires is presented and evaluated. Our interactive guidewire simulator models the medical instrument as thin flexible elastic rods with arbitrary cross sections, treating the centerline as dynamic and the deformation as quasi-static. Constraints are used to enforce inextensibility of guidewires, providing an efficient computation for bending and twisting modes of the physically-based simulation model. We demonstrate the effectiveness of the new model with a number of simulation examples.
Journal Article
A Dusty Veil Shading Betelgeuse During Its Great Dimming
2021
Red supergiants are the most common final evolutionary stage of stars that have initial masses between 8 and 35 times that of the Sun. During this stage, which lasts roughly 100,000 years, red supergiants experience substantial mass loss. However, the mechanism for this mass loss is unknown. Mass loss may affect the evolutionary path, collapse and future supernova light curve of a red supergiant, and its ultimate fate as either a neutron star or a black hole. From November 2019 to March 2020, Betelgeuse—the second-closest red supergiant to Earth (roughly 220 parsecs, or 724 light years, away)—experienced a historic dimming of its visible brightness. Usually having an apparent magnitude between 0.1 and 1.0, its visual brightness decreased to 1.614 ± 0.008 magnitudes around 7–13 February 2020—an event referred to as Betelgeuse’s Great Dimming. Here we report high-angular-resolution observations showing that the southern hemisphere of Betelgeuse was ten times darker than usual in the visible spectrum during its Great Dimming. Observations and modelling support a scenario in which a dust clump formed recently in the vicinity of the star, owing to a local temperature decrease in a cool patch that appeared on the photosphere. The directly imaged brightness variations of Betelgeuse evolved on a timescale of weeks. Our findings suggest that a component of mass loss from red supergiants is inhomogeneous, linked to a very contrasted and rapidly changing photosphere.
Journal Article
Ezh2 Loss-of-Function Alters Zebrafish Cerebellum Development
2025
EZH2, the catalytic subunit of polycomb repressive complex 2 (PRC2), plays a critical role in neural development by regulating gene expression through the trimethylation of lysine 27 on histone H3 (H3K27me3), which promotes chromatin remodeling and transcriptional repression. Although PRC2 is known to regulate cell fate specification and gliogenesis, its in vivo functions during vertebrate neurodevelopment, particularly at the level of neuronal subtype differentiation, remain incompletely understood. Here, we investigated the consequences of ezh2 loss-of-function during zebrafish brain development, focusing on oligodendrocyte differentiation, cerebellar neurogenesis, and the formation of neurotransmitter-specific neuronal populations. Using whole-mount in situ hybridization, we found that ezh2 inactivation does not alter the expression of oligodendrocyte lineage markers, indicating that early oligodendrocyte precursor cell specification and myelination are preserved. However, a significant reduction in cerebellar proliferation was observed in ezh2-deficient larvae, as evidenced by the downregulation of pcna and cyclin A2, while other brain regions remained unaffected. Notably, the expression of atoh1c, a key marker of glutamatergic cerebellar progenitors, was strongly reduced at 5 days post fertilization, suggesting a selective role for ezh2 in maintaining cerebellar progenitor identity. This was associated with impaired differentiation of both glutamatergic granule cells and GABAergic Purkinje cells in specific cerebellar subregions. In contrast, the expression of markers for other major neurotransmitter systems remained unaffected, indicating a region-specific requirement for ezh2 in neuronal development. Finally, behavioral analysis revealed a hyperlocomotor phenotype in ezh2−/− larvae, consistent with cerebellar dysfunction. Together, these findings identify ezh2 as a key regulator of progenitor maintenance and neuronal differentiation in the cerebellum, highlighting its crucial role in establishing functional cerebellar circuits.
Journal Article
Predictive Factors of Intestinal Necrosis in Acute Mesenteric Ischemia: Prospective Study from an Intestinal Stroke Center
2017
To identify predictive factors for irreversible transmural intestinal necrosis (ITIN) in acute mesenteric ischemia (AMI) and establish a risk score for ITIN.
This single-center prospective cohort study was performed between 2009 and 2015 in patients with AMI. The primary outcome was the occurrence of ITIN, confirmed by specimen analysis in patients who underwent surgery. Patients who recovered from AMI with no need for intestinal resection were considered not to have ITIN. Clinical, biological and radiological data were compared in a Cox regression model.
A total of 67 patients were included. The origin of AMI was arterial, venous, or non-occlusive in 61%, 37%, 2% of cases, respectively. Intestinal resection and ITIN concerned 42% and 34% of patients, respectively. Factors associated with ITIN in multivariate analysis were: organ failure (hazard ratio (HR): 3.1 (95% confidence interval (CI): 1.1-8.5); P=0.03), serum lactate levels >2 mmol/l (HR: 4.1 (95% CI: 1.4-11.5); P=0.01), and bowel loop dilation on computerized tomography scan (HR: 2.6 (95% CI: 1.2-5.7); P=0.02). ITIN rate increased from 3% to 38%, 89%, and 100% in patients with 0, 1, 2, and 3 factors, respectively. Area under the receiver operating characteristics curve for the diagnosis of ITIN was 0.936 (95% CI: 0.866-0.997) depending on the number of predictive factors.
We identified three predictive factors for irreversible intestinal ischemic injury requiring resection in the setting of AMI. Close monitoring of these factors could help avoid unnecessary laparotomy, prevent resection, as well as complications due to unresected necrosis, and possibly lower the overall mortality.
Journal Article
Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells
2022
Background
CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer.
Methods
After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters.
Results
We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues.
Conclusion
Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers.
Journal Article
Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment
by
Bidan, Nadège
,
Toillon, Robert-Alain
,
Lagadec, Chann
in
AKT protein
,
Biochemistry
,
Biochemistry, Molecular Biology
2021
Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.
Journal Article
Synthesis, Properties, and Electrochemistry of bis(iminophosphorane)pyridine Iron(II) Pincer Complexes
by
Nuñez Bahena, Erick
,
Le Lagadec, Ronan
,
Sutra, Pierre
in
Catalysts
,
Chemical Sciences
,
Chemical synthesis
2024
Iron derivatives have emerged as valuable catalysts for a variety of transformations, as well as for biological and photophysical applications, and iminophosphorane can be considered an ideal ligand scaffold for modulating electronic and steric parameters in transition metal complexes. In this report, we aimed to synthesize dichloride and dibromide iron(II) complexes supported by symmetric bis(iminophosphorane)pyridine ligands, starting from readily available ferrous halides. The ease of synthesis of this class of ligands served to access several derivatives with distinct electronic and steric properties imparted by the phosphine moiety. The ligands and the resulting iron(II) complexes were characterized by 31P and 1H NMR spectroscopy and DART or ESI mass spectrometry. While none of these iron(II) complexes could be characterized by single-crystal X-ray diffraction, suitable crystals of a µ-O bridged dinuclear iron complex bearing an iminophosphorane ligand were obtained, confirming a κ3 binding motif. The bis(iminophosphorane)pyridine ligands in the obtained iron(II) complexes are labile, as demonstrated by their facile substitution by terpyridine. Cyclic voltammetry studies revealed that the oxidation of bis(iminophosphorane)pyridine iron(II) complexes to iron(III) species is quasi-reversible, suggesting the strong thermodynamic stabilization of the iron(III) center imparted by the σ-donating iminophosphorane ligands.
Journal Article
Synthesis, Properties, and Electrochemistry of bis Pincer Complexes
by
Le Lagadec, Ronan
,
Sánchez López, Nicolás
,
Nuñez Bahena, Erick
in
Analysis
,
Chemical synthesis
,
Coordination compounds
2024
Iron derivatives have emerged as valuable catalysts for a variety of transformations, as well as for biological and photophysical applications, and iminophosphorane can be considered an ideal ligand scaffold for modulating electronic and steric parameters in transition metal complexes. In this report, we aimed to synthesize dichloride and dibromide iron(II) complexes supported by symmetric bis(iminophosphorane)pyridine ligands, starting from readily available ferrous halides. The ease of synthesis of this class of ligands served to access several derivatives with distinct electronic and steric properties imparted by the phosphine moiety. The ligands and the resulting iron(II) complexes were characterized by [sup.31] P and [sup.1] H NMR spectroscopy and DART or ESI mass spectrometry. While none of these iron(II) complexes could be characterized by single-crystal X-ray diffraction, suitable crystals of a µ-O bridged dinuclear iron complex bearing an iminophosphorane ligand were obtained, confirming a κ[sup.3] binding motif. The bis(iminophosphorane)pyridine ligands in the obtained iron(II) complexes are labile, as demonstrated by their facile substitution by terpyridine. Cyclic voltammetry studies revealed that the oxidation of bis(iminophosphorane)pyridine iron(II) complexes to iron(III) species is quasi-reversible, suggesting the strong thermodynamic stabilization of the iron(III) center imparted by the σ-donating iminophosphorane ligands.
Journal Article