Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Lagerweij, Tonny"
Sort by:
A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities
Personalized cancer treatments using combinations of drugs with a synergistic effect is attractive but proves to be highly challenging. Here we present an approach to uncover the efficacy of drug combinations based on the analysis of mono-drug effects. For this we used dose-response data from pharmacogenomic encyclopedias and represent these as a drug atlas. The drug atlas represents the relations between drug effects and allows to identify independent processes for which the tumor might be particularly vulnerable when attacked by two drugs. Our approach enables the prediction of combination-therapy which can be linked to tumor-driving mutations. By using this strategy, we can uncover potential effective drug combinations on a pan-cancer scale. Predicted synergies are provided and have been validated in glioblastoma, breast cancer, melanoma and leukemia mouse-models, resulting in therapeutic synergy in 75% of the tested models. This indicates that we can accurately predict effective drug combinations with translational value. Drug synergies impact the efficacy of combination therapies but are difficult to identify. Here Narayan et al. describe the drug atlas, a method to predict effective drug combinations from common exclusive drug effects providing a resource for exploring and understanding effective drug combinations.
The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth
Glioblastoma (GBM) is the most aggressive and an incurable type of brain cancer. Human cytomegalovirus (HCMV) DNA and encoded proteins, including the chemokine receptor US28, have been detected in GBM tumors. US28 displays constitutive activity and is able to bind several human chemokines, leading to the activation of various proliferative and inflammatory signaling pathways. Here we show that HCMV, through the expression of US28, significantly enhanced the growth of 3D spheroids of U251− and neurospheres of primary glioblastoma cells. Moreover, US28 expression accelerated the growth of glioblastoma cells in an orthotopic intracranial GBM-model in mice. We developed highly potent and selective US28-targeting nanobodies, which bind to the extracellular domain of US28 and detect US28 in GBM tissue. The nanobodies inhibited chemokine binding and reduced the constitutive US28-mediated signaling with nanomolar potencies and significantly impaired HCMV/US28-mediated tumor growth in vitro and in vivo. This study emphasizes the oncomodulatory role of HCMV-encoded US28 and provides a potential therapeutic approach for HCMV-positive tumors using the nanobody technology.
Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds
Background Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. Methods Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N  = 33) and diffuse peritoneal mesothelioma (DMPM, N  = 56) patients. Results Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. Conclusions This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors.
Non-thermal plasma as promising anti-cancer therapy against bladder cancer by inducing DNA damage and cell cycle arrest
Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma’s potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings. PAS treatment exerts a potent cytotoxic effect through the production of intracellular reactive oxygen species, resulting in DNA damage and subsequent induction of G1 cell cycle arrest/senescence. This is induced via upregulation of cell cycle checkpoint signalling and DNA damage repair pathways using LC-M/MS-based phospho-proteomics. Importantly, combining PAS with MMC reveals a synergistic effect (Combination Index of 0.59–0.67), suggesting the potential of utilizing PAS in combination therapies. Our findings demonstrate PAS’s mode of action and suggest its potential as a promising treatment for bladder cancer, warranting further clinical studies.
Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment
Background Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular structures and migration of cells in the brain of mice, however, with limited imaging depth. To enable comprehensive analysis of GBM and the brain microenvironment, in-depth 3D imaging methods are needed. Here, we employed methods for optical tissue clearing prior to 3D microscopy to visualize the brain microvasculature and routes of invasion of GBM cells. Methods We present a workflow for ex vivo imaging of optically cleared brain tumor tissues and subsequent computational modeling. This workflow was used for quantification of the microvasculature in relation to nuclear or cellular density in healthy mouse brain tissues and in human orthotopic, infiltrative GBM8 and E98 glioblastoma models. Results Ex vivo cleared mouse brain tissues had a >10-fold imaging depth as compared to intravital imaging of mouse brain in vivo. Imaging of optically cleared brain tissue allowed quantification of the 3D microvascular characteristics in healthy mouse brains and in tissues with diffuse, infiltrative growing GBM8 brain tumors. Detailed 3D visualization revealed the organization of tumor cells relative to the vasculature, in both gray matter and white matter regions, and patterns of multicellular GBM networks collectively invading the brain parenchyma. Conclusions Optical tissue clearing opens new avenues for combined quantitative and 3D microscopic analysis of the topographical relationship between GBM cells and their microenvironment.
Three-dimensional histochemistry and imaging of human gingiva
In the present study, 3D histochemistry and imaging methodology is described for human gingiva to analyze its vascular network. Fifteen human gingiva samples without signs of inflammation were cleared using a mixture of 2-parts benzyl benzoate and 1-part benzyl alcohol (BABB), after being immunofluorescently stained for CD31, marker of endothelial cells to visualize blood vessels in combination with fluorescent DNA dyes. Samples were imaged in 3D with the use of confocal microscopy and light-sheet microscopy and image processing. BABB clearing caused limited tissue shrinkage 13 ± 7% as surface area and 24 ± 1% as volume. Fluorescence remained intact in BABB-cleared gingiva samples and light-sheet microscopy was an excellent tool to image gingivae whereas confocal microscopy was not. Histochemistry on cryostat sections of gingiva samples after 3D imaging validated structures visualized in 3D. Three-dimensional images showed the vascular network in the stroma of gingiva with one capillary loop in each stromal papilla invading into the epithelium. The capillary loops were tortuous with structural irregularities that were not apparent in 2D images. It is concluded that 3D histochemistry and imaging methodology described here is a promising novel approach to study structural aspects of human gingiva in health and disease.
Temporal Colonic Gene Expression Profiling in the Recurrent Colitis Model Identifies Early and Chronic Inflammatory Processes
The recurrent TNBS-colitis model in BALB/c mice has been proposed as a model of Inflammatory Bowel Disease with a shifting pattern of local cytokines with the expression of Th1 cytokines during the early phase, Th17 cytokines during the intermediate phase and Th2 cytokines during late fibrotic stages. In this study, we evaluated the development of pathology in time-in conjunction with genome-wide gene expression in the colons-in response to three weekly intrarectal instillations of TNBS. During this time-frame mice develop colitis with extensive cellular infiltration of (sub)mucosa and mildly to moderately affected crypt architecture. These pathological processes were sensitive to local treatment with budesonide. Gene expression profiling confirmed an acute phase response after each intrarectal TNBS-challenge. In addition, a chronic inflammatory process developed over time particularly evident from a gradual increase in expression of mast cell related genes. The changes in pathological hallmarks were consistent with a temporal expression of mRNA encoding a selection of chemokines. In conclusion, the early stages of the recurrent TNBS-colitis model reflect several aspects of inflammatory bowel disease which are sensitive to immunomodulation.
Gene Expression Profiling Identifies Mechanisms of Protection to Recurrent Trinitrobenzene Sulfonic Acid Colitis Mediated by Probiotics
Host–microbiota interactions in the intestinal mucosa play a major role in intestinal immune homeostasis and control the threshold of local inflammation. The aim of this study was to evaluate the efficacy of probiotics in the recurrent trinitrobenzene sulfonic acid (TNBS)-induced colitis model and gain more insight into protective mechanisms.MethodsModerate chronic inflammation of the colon was induced in BALB/c mice by repetitive intrarectal challenges with TNBS. Administration of probiotics started 2 weeks before colitis induction and was continued throughout colitis development.ResultsLong-term administration of Lactobacillus plantarum NCIMB8826 or the probiotic mixture VSL#3 reduced intestinal inflammation induced by TNBS, evident from improved colon morphology and less influx of innate (CD11b+) and adaptive (CD4+/CD8+) immune cells in the intestinal mucosa and decreased proinflammatory serum cytokines (interferon-gamma [IFN-γ], interleukin [IL]-17, IL-1β, monocyte chemoattractant protein [MCP]-1) in probiotic-treated mice. Genomewide expression analysis of colonic tissues using microarrays revealed differences in expression of genes related to inflammation and immune processes between untreated and probiotic treated mice. Principal component analysis revealed that probiotic treatment resulted in a shift of gene expression profiles toward those of healthy controls. Effects of probiotics on colonic gene expression were most profound during active inflammation, in particular on gene clusters related to mast cells and antimicrobial peptides. The results were substantiated by suppression of chemokine gene expression.ConclusionsOur data are in favor of a model in which probiotics downregulate expression of chemokines in the colon, thereby decreasing influx of inflammatory cells and rendering mice resistant to the induction of colitis. (Inflamm Bowel Dis 2012)
Development of Atopic Dermatitis in Mice Transgenic for Human Apolipoprotein C1
Mice with transgenic expression of human apolipoprotein C1 (APOC1) in liver and skin have strongly increased serum levels of cholesterol, triglycerides, and free fatty acids, indicative of a disturbed lipid metabolism. Importantly, these mice display a disturbed skin barrier function, evident from increased transepidermal water loss, and spontaneously develop symptoms of dermatitis including scaling, lichenification, excoriations, and pruritus. Histological analysis shows increased epidermal thickening and spongiosis in conjunction with elevated numbers of inflammatory cells (eosinophils, neutrophils, mast cells, macrophages, and CD4+ T cells) in the dermis. In addition, affected mice have increased serum levels of IgE and show abundant IgE+ mast cells in the dermis. Partial inhibition of disease could be achieved by restoration of the skin barrier function with topical application of a lipophilic ointment. Furthermore, the development of atopic dermatitis in these mice was suppressed by corticosteroid treatment. These findings in APOC1(+/+) mice underscore the role of skin barrier integrity in the pathogenesis of atopic dermatitis.
Ape1 guides DNA repair pathway choice that is associated with drug tolerance in glioblastoma
Ape1 is the major apurinic/apyrimidinic (AP) endonuclease activity in mammalian cells, and a key factor in base-excision repair of DNA. High expression or aberrant subcellular distribution of Ape1 has been detected in many cancer types, correlated with drug response, tumor prognosis, or patient survival. Here we present evidence that Ape1 facilitates BRCA1-mediated homologous recombination repair (HR), while counteracting error-prone non-homologous end joining of DNA double-strand breaks. Furthermore, Ape1, coordinated with checkpoint kinase Chk2, regulates drug response of glioblastoma cells. Suppression of Ape1/Chk2 signaling in glioblastoma cells facilitates alternative means of damage site recruitment of HR proteins as part of a genomic defense system. Through targeting “HR-addicted” temozolomide-resistant glioblastoma cells via a chemical inhibitor of Rad51, we demonstrated that targeting HR is a promising strategy for glioblastoma therapy. Our study uncovers a critical role for Ape1 in DNA repair pathway choice, and provides a mechanistic understanding of DNA repair-supported chemoresistance in glioblastoma cells.