Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Lagha, Mohand"
Sort by:
Multisensor Data Fusion in IoT Environments in Dempster–Shafer Theory Setting: An Improved Evidence Distance-Based Approach
In IoT environments, voluminous amounts of data are produced every single second. Due to multiple factors, these data are prone to various imperfections, they could be uncertain, conflicting, or even incorrect leading to wrong decisions. Multisensor data fusion has proved to be powerful for managing data coming from heterogeneous sources and moving towards effective decision-making. Dempster–Shafer (D–S) theory is a robust and flexible mathematical tool for modeling and merging uncertain, imprecise, and incomplete data, and is widely used in multisensor data fusion applications such as decision-making, fault diagnosis, pattern recognition, etc. However, the combination of contradictory data has always been challenging in D–S theory, unreasonable results may arise when dealing with highly conflicting sources. In this paper, an improved evidence combination approach is proposed to represent and manage both conflict and uncertainty in IoT environments in order to improve decision-making accuracy. It mainly relies on an improved evidence distance based on Hellinger distance and Deng entropy. To demonstrate the effectiveness of the proposed method, a benchmark example for target recognition and two real application cases in fault diagnosis and IoT decision-making have been provided. Fusion results were compared with several similar methods, and simulation analyses have shown the superiority of the proposed method in terms of conflict management, convergence speed, fusion results reliability, and decision accuracy. In fact, our approach achieved remarkable accuracy rates of 99.32% in target recognition example, 96.14% in fault diagnosis problem, and 99.54% in IoT decision-making application.
Path Planning and Formation Control for UAV-Enabled Mobile Edge Computing Network
Recent developments in unmanned aerial vehicles (UAVs) have led to the introduction of a wide variety of innovative applications, especially in the Mobile Edge Computing (MEC) field. UAV swarms are suggested as a promising solution to cope with the issues that may arise when connecting Internet of Things (IoT) applications to a fog platform. We are interested in a crucial aspect of designing a swarm of UAVs in this work, which is the coordination of swarm agents in complicated and unknown environments. Centralized leader–follower formations are one of the most prevalent architectural designs in the literature. In the event of a failed leader, however, the entire mission is canceled. This paper proposes a framework to enable the use of UAVs under different MEC architectures, overcomes the drawbacks of centralized architectures, and improves their overall performance. The most significant contribution of this research is the combination of distributed formation control, online leader election, and collaborative obstacle avoidance. For the initial phase, the optimal path between departure and arrival points is generated, avoiding obstacles and agent collisions. Next, a quaternion-based sliding mode controller is designed for formation control and trajectory tracking. Moreover, in the event of a failed leader, the leader election phase allows agents to select the most qualified leader for the formation. Multiple possible scenarios simulating real-time applications are used to evaluate the framework. The obtained results demonstrate the capability of UAVs to adapt to different MEC architectures under different constraints. Lastly, a comparison is made with existing structures to demonstrate the effectiveness, safety, and durability of the designed framework.
Vision-Based UAV Detection and Localization to Indoor Positioning System
In recent years, the technological landscape has undergone a profound metamorphosis catalyzed by the widespread integration of drones across diverse sectors. Essential to the drone manufacturing process is comprehensive testing, typically conducted in controlled laboratory settings to uphold safety and privacy standards. However, a formidable challenge emerges due to the inherent limitations of GPS signals within indoor environments, posing a threat to the accuracy of drone positioning. This limitation not only jeopardizes testing validity but also introduces instability and inaccuracies, compromising the assessment of drone performance. Given the pivotal role of precise GPS-derived data in drone autopilots, addressing this indoor-based GPS constraint is imperative to ensure the reliability and resilience of unmanned aerial vehicles (UAVs). This paper delves into the implementation of an Indoor Positioning System (IPS) leveraging computer vision. The proposed system endeavors to detect and localize UAVs within indoor environments through an enhanced vision-based triangulation approach. A comparative analysis with alternative positioning methodologies is undertaken to ascertain the efficacy of the proposed system. The results obtained showcase the efficiency and precision of the designed system in detecting and localizing various types of UAVs, underscoring its potential to advance the field of indoor drone navigation and testing.
Fire Detection and Geo-Localization Using UAV’s Aerial Images and Yolo-Based Models
The past decade has witnessed a growing demand for drone-based fire detection systems, driven by escalating concerns about wildfires exacerbated by climate change, as corroborated by environmental studies. However, deploying existing drone-based fire detection systems in real-world operational conditions poses practical challenges, notably the intricate and unstructured environments and the dynamic nature of UAV-mounted cameras, often leading to false alarms and inaccurate detections. In this paper, we describe a two-stage framework for fire detection and geo-localization. The key features of the proposed work included the compilation of a large dataset from several sources to capture various visual contexts related to fire scenes. The bounding boxes of the regions of interest were labeled using three target levels, namely fire, non-fire, and smoke. The second feature was the investigation of YOLO models to undertake the detection and localization tasks. YOLO-NAS was retained as the best performing model using the compiled dataset with an average mAP50 of 0.71 and an F1_score of 0.68. Additionally, a fire localization scheme based on stereo vision was introduced, and the hardware implementation was executed on a drone equipped with a Pixhawk microcontroller. The test results were very promising and showed the ability of the proposed approach to contribute to a comprehensive and effective fire detection system.
Spread Spectrum Data Transmission System for User Unmanned Aerial Vehicles
In today’s world of unmanned aerial vehicle (UAV) telecommunications, data transmission is both important and delicate. Various organizations have used special techniques to ensure reliable transmission and stable communication. At this stage, we propose a method that enhances security and makes the transmission of data and image more resistant to interference and eavesdropping while improving signal reliability; this method is based on the Direct Sequence-Spread Spectrum (DS-SS) technique with a new pseudo-noise PN sequence created by merging chaotic and Barker sequences. MATLAB simulates these results for different spreading factors of the new sequence, and we evaluate the performance of the system in a user context on the Additive White Gaussian Noise (AWGN) channel. As a result, the new DS-SS technology improves the quality of data transmitted by UAVs.
Leveraging Large Language Models for Real-Time UAV Control
As drones become increasingly integrated into civilian and industrial domains, the demand for natural and accessible control interfaces continues to grow. Conventional manual controllers require technical expertise and impose cognitive overhead, limiting their usability in dynamic and time-critical scenarios. To address these limitations, this paper presents a multilingual voice-driven control framework for quadrotor drones, enabling real-time operation in both English and Arabic. The proposed architecture combines offline Speech-to-Text (STT) processing with large language models (LLMs) to interpret spoken commands and translate them into executable control code. Specifically, Vosk is employed for bilingual STT, while Google Gemini provides semantic disambiguation, contextual inference, and code generation. The system is designed for continuous, low-latency operation within an edge–cloud hybrid configuration, offering an intuitive and robust human–drone interface. While speech recognition and safety validation are processed entirely offline, high-level reasoning and code generation currently rely on cloud-based LLM inference. Experimental evaluation demonstrates an average speech recognition accuracy of 95% and end-to-end command execution latency between 300 and 500 ms, validating the feasibility of reliable, multilingual, voice-based UAV control. This research advances multimodal human–robot interaction by showcasing the integration of offline speech recognition and LLMs for adaptive, safe, and scalable aerial autonomy.
Parallel continuous skyline query over high-dimensional data stream windows
Real-time multi-criteria decision-making applications in fields like high-speed algorithmic trading, emergency response, and disaster management have driven the development of new types of preference queries. This is an example of a skyline search. Multi-criteria decision-making utilizes the skyline operator to extract highly significant tuples or useful data points from extensive sets of multi-dimensional databases. The user’s settings determine the results, which include all tuples whose attribute vector remains undefeated by another tuple. The extracted tuples are commonly known as the skyline set. Lately, there has been a growing trend in research studies to perform skyline queries on data stream applications. These queries consist of extracting desired records from sliding windows and removing outdated records from incoming data sets that do not meet user requirements. The datasets in these applications are extremely large and exhibit a wide range of dimensions that vary over time. Consequently, the skyline query is considered a computationally demanding task, with the challenge of achieving a real-time response within an acceptable duration. We must transport and process enormous quantities of data. Traditional skyline algorithms have faced new challenges due to limitations in data transmission bandwidth and latency. The transfer of vast quantities of data would affect performance, power efficiency, and reliability. Consequently, it is imperative to make alterations to the computer paradigm. Parallel skyline queries have attracted the attention of both scholars and the business sector. The study of skyline queries has focused on sequential algorithms and parallel implementations for multicore processors, primarily due to their widespread use. While previous research has focused on sequential algorithms, there is a limitation to comprehensive studies that specifically address modern parallel processors. While numerous articles have been published regarding the parallelization of regular skyline queries, there is a limited amount of research dedicated specifically to the parallel processing of continuous skyline queries. This study introduces PRSS, a continuous skyline technique for multicore processors specifically designed for sliding window-based data streams. The efficacy of the proposed parallel implementation is demonstrated through tests conducted on both real-world and synthetic datasets, encompassing various point distributions, arrival rates, and window widths. The experimental results for a dataset characterized by a large number of dimensions and cardinality demonstrate significant acceleration.
A Multi-Lingual Speech Recognition-Based Framework to Human-Drone Interaction
In recent years, human–drone interaction has received increasing interest from the scientific community. When interacting with a drone, humans assume a variety of roles, the nature of which are determined by the drone’s application and degree of autonomy. Common methods of controlling drone movements include by RF remote control and ground control station. These devices are often difficult to manipulate and may even require some training. An alternative is to use innovative methods called natural user interfaces that allow users to interact with drones in an intuitive manner using speech. However, using only one language of interacting may limit the number of users, especially if different languages are spoken in the same region. Moreover, environmental and propellers noise make speech recognition a complicated task. The goal of this work is to use a multilingual speech recognition system that includes English, Arabic, and Amazigh to control the movement of drones. The reason for selecting these languages is that they are widely spoken in many regions, particularly in the Middle East and North Africa (MENA) zone. To achieve this goal, a two-stage approach is proposed. During the first stage, a deep learning based model for multilingual speech recognition is designed. Then, the developed model is deployed in real settings using a quadrotor UAV. The network was trained using 38,850 records including commands and unknown words mixed with noise to improve robustness. An average class accuracy of more than 93% has been achieved. After that, experiments were conducted involving 16 participants giving voice commands in order to test the efficiency of the designed system. The achieved accuracy is about 93.76% for English recognition and 88.55%, 82.31% for Arabic and Amazigh, respectively. Finally, hardware implementation of the designed system on a quadrotor UAV was made. Real time tests have shown that the approach is very promising as an alternative form of human–drone interaction while offering the benefit of control simplicity.
Multi-layered optimal navigation system for quadrotor UAV
Purpose This paper aims to propose a new multi-layered optimal navigation system that jointly optimizes the energy consumption, improves the robustness and raises the performance of a quadrotor unmanned aerial vehicle (UAV). Design/methodology/approach The proposed system is designed as a multi-layered system. First, the control architecture layer links the input and the output spaces via quaternion-based differential flatness equations. Then, the trajectory generation layer determines the optimal reference path and avoids obstacles to secure the UAV from collisions. Finally, the control layer allows the quadrotor to track the generated path and guarantees the stability using a double loop non-linear optimal backstepping controller (OBS). Findings All the obtained results are confirmed using several scenarios in different situations to prove the accuracy, energy optimization and the robustness of the designed system. Practical implications The proposed controllers are easily implementable on-board and are computationally efficient. Originality/value The originality of this research is the design of a multi-layered optimal navigation system for quadrotor UAV. The proposed control architecture presents a direct relation between the states and their derivatives, which then simplifies the trajectory generation problem. Furthermore, the derived differentially flat equations allow optimization to occur within the output space as opposed to the control space. This is beneficial because constraints such as obstacle avoidance occur in the output space; hence, the computation time for constraint handling is reduced. For the OBS, the novelty is that all controller parameters are derived using the multi-objective genetic algorithm (MO-GA) that optimizes all the quadrotor state’s cost functions jointly.
Equitable optimized airspace sectorization based on constraint programming and OWA aggregation
Purpose Airspace sectorization is an important task, which has a significant impact in the everyday work of air control services. Especially in recent years, because of the constant increase in air traffic, existing airspace sectorization techniques have difficulties to tackle the large air traffic volumes, creating imbalanced sectors and uneven workload distribution among sectors. The purpose of this paper is to propose a new approach to find optimal airspace sectorization balancing the traffic controller workload between sectors, subject to airspace requirements. Design/methodology/approach A constraint programming (CP) model called equitable airspace sectorization problem (EQASP) relies on ordered weighted averaging (OWA) multiagent optimization and the parallel portfolio architecture has been developed, which integrates the equity into an existing CP approach (Trandac et al., 2005). The EQASP was evaluated and compared with the method of Trandac et al. (2005), according to the quality of workload balancing between sectors and the resolution performance. The comparison was achieved using real air traffic low-altitude network data sets of French airspace for five flight information regions for 24 h a day and the Algerian airspace for three various periods (off peak hours, peak hours and 24 h). Findings It has been demonstrated that the proposed EQASP model, which is based on OWA multicriteria optimization method, significantly improved both the solving performance and the workload equity between sectors, while offering strong theoretical properties of the balancing requirement. Interestingly, when solving hard instances, our parallel sectorization tool can provide, at any time, a workable solution, which satisfies all geometric constraints of sectorization. Practical implications This study can be used to design well-balanced air sectors in terms of workload between control units in the strategic phase. To fulfil the airspace users’ constraints, one can refer to this study to assess the capacity of each air sector (especially the overloaded sectors) and then adjust the sector’s shape to respond to the dynamic changes in traffic patterns. Social implications This theoretical and practical approach enables the development and support of the definition of the “Air traffic management (ATM) Concept Target” through improvements in human factors specifically (balancing workload across sectors), which contributes to raising the level of capacity, safety and efficiency (SESAR Vision of ATM 2035). Originality/value In their approach, the authors proposed an OWA-based multiagent optimization model, ensuring the search for the best equitable solution, without requiring user-defined balancing constraints, which enforce each sector to have a workload between two user-defined bounds (Wmin, Wmax).