Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
166
result(s) for
"Lahmann, R."
Sort by:
NuRadioMC: simulating the radio emission of neutrinos from interaction to detector
by
Welling, C.
,
Winchen, T.
,
Hokanson-Fasig, B.
in
Analysis
,
Astronomy
,
Astrophysics and Cosmology
2020
NuRadioMC is a Monte Carlo framework designed to simulate ultra-high energy neutrino detectors that rely on the radio detection method. This method exploits the radio emission generated in the electromagnetic component of a particle shower following a neutrino interaction. NuRadioMC simulates everything from the neutrino interaction in a medium, the subsequent Askaryan radio emission, the propagation of the radio signal to the detector and finally the detector response. NuRadioMC is designed as a modern, modular Python-based framework, combining flexibility in detector design with user-friendliness. It includes a state-of-the-art event generator, an improved modelling of the radio emission, a revisited approach to signal propagation and increased flexibility and precision in the detector simulation. This paper focuses on the implemented physics processes and their implications for detector design. A variety of models and parameterizations for the radio emission of neutrino-induced showers are compared and reviewed. Comprehensive examples are used to discuss the capabilities of the code and different aspects of instrumental design decisions.
Journal Article
Fiber optic hydrophones for acoustic neutrino detection
2016
Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order of magnitude larger than what has presently been realized. With a large detection volume and a large number of hydrophones, there is a need for technology that is cheap and easy to deploy. Fiber optics provide a natural way for distributed sensing. In addition, a sensor has been designed and manufactured that can be produced cost-effectively on an industrial scale. Sensitivity measurements show that the sensor is able to reach the required sea-state zero level. For a proper interpretation of the expected bipolar signals, filtering techniques should be applied to remove the effects of the unwanted resonance peaks.
Journal Article
Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA
2022
The next generation of water Cherenkov neutrino telescopes in the Mediterranean Sea are under construction offshore France (KM3NeT/ORCA) and Sicily (KM3NeT/ARCA). The KM3NeT/ORCA detector features an energy detection threshold which allows to collect atmospheric neutrinos to study flavour oscillation. This paper reports the KM3NeT/ORCA sensitivity to this phenomenon. The event reconstruction, selection and classification are described. The sensitivity to determine the neutrino mass ordering was evaluated and found to be 4.4σ if the true ordering is normal and 2.3σ if inverted, after 3 years of data taking. The precision to measure Δm322 and θ23 were also estimated and found to be 85.10-6eV2 and (-3.1+1.9)∘ for normal neutrino mass ordering and, 75.10-6eV2 and (-7.0+2.0)∘ for inverted ordering. Finally, a unitarity test of the leptonic mixing matrix by measuring the rate of tau neutrinos is described. Three years of data taking were found to be sufficient to exclude event rate variations larger than 20% at 3σ level.
Journal Article
Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data
by
Bertin, V.
,
Le Breton, R.
,
Chabab, M.
in
Astrofísica
,
Astronomia i astrofísica
,
Classical and Quantum Gravitation
2019
A
bstract
The ANTARES neutrino telescope has an energy threshold of a few tens of GeV. This allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of one sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of Δ
m
32
2
and
θ
23
has been performed — which is consistent with world best-fit values — and constraints on the 3+1 neutrino model have been derived.
Journal Article
Atmospheric muons measured with the KM3NeT detectors in comparison with updated numeric predictions
2024
The measurement of the flux of muons produced in cosmic ray air showers is essential for the study of primary cosmic rays. Such measurements are important in extensive air shower detectors to assess the energy spectrum and the chemical composition of the cosmic ray flux, complementary to the information provided by fluorescence detectors. Detailed simulations of the cosmic ray air showers are carried out, using codes such as CORSIKA, to estimate the muon flux at sea level. These simulations are based on the choice of hadronic interaction models, for which improvements have been implemented in the post-LHC era. In this work, a deficit in simulations that use state-of-the-art QCD models with respect to the measurement deep underwater with the KM3NeT neutrino detectors is reported. The KM3NeT/ARCA and KM3NeT/ORCA neutrino telescopes are sensitive to TeV muons originating mostly from primary cosmic rays with energies around 10 TeV. The predictions of state-of-the-art QCD models show that the deficit with respect to the data is constant in zenith angle; no dependency on the water overburden is observed. The observed deficit at a depth of several kilometres is compatible with the deficit seen in the comparison of the simulations and measurements at sea level.
Journal Article
Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units
2020
KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV–PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232–3386 m seawater depth is obtained.
Journal Article
Acoustic Particle Detection with the ANTARES Detector
by
Richardt, C.
,
Anton, G.
,
Hößl, J.
in
Acoustics
,
Advances in Signal Processing for Maritime Applications
,
Engineering
2010
The (Antares Modules for Acoustic Detection Under the Sea) AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch) ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding
eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.
Journal Article
Search for non-standard neutrino interactions with 10 years of ANTARES data
by
Bertin, V.
,
Le Breton, R.
,
Zegarelli, A.
in
Classical and Quantum Gravitation
,
Coefficients
,
Collaboration
2022
A
bstract
Non-standard interactions of neutrinos arising in many theories beyond the Standard Model can significantly alter matter effects in atmospheric neutrino propagation through the Earth. In this paper, a search for deviations from the prediction of the standard 3-flavour atmospheric neutrino oscillations using the data taken by the ANTARES neutrino telescope is presented. Ten years of atmospheric neutrino data collected from 2007 to 2016, with reconstructed energies in the range from ∼16 GeV to 100 GeV, have been analysed. A log-likelihood ratio test of the dimensionless coefficients
ε
μτ
and
ε
ττ
−
ε
μμ
does not provide clear evidence of deviations from standard interactions. For normal neutrino mass ordering, the combined fit of both coefficients yields a value 1.7
σ
away from the null result. However, the 68% and 95% confidence level intervals for
ε
μτ
and
ε
ττ
−
ε
μμ
, respectively, contain the null value. Best fit values, one standard deviation errors and bounds at the 90% confidence level for these coefficients are given for both normal and inverted mass orderings. The constraint on
ε
μτ
is among the most stringent to date and it further restrains the strength of possible non-standard interactions in the
μ − τ
sector.
Journal Article
In situ, broadband measurement of the radio frequency attenuation length at Summit Station, Greenland
2022
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\\alpha$. We find an approximately linear dependence of $L_\\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\\langle L_\\alpha \\rangle = ( ( 1154 \\pm 121) - ( 0.81 \\pm 0.14) \\, ( \\nu /{\\rm MHz}) ) \\,{\\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
Journal Article