Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Lai, Hsing-Jung"
Sort by:
An electrophysiological perspective on Parkinson’s disease: symptomatic pathogenesis and therapeutic approaches
by
Chuang, Hsiang-Hao
,
Yang, Cheng-Kai
,
Lee, Lan-Hsin Nancy
in
Abnormalities
,
Basal ganglia
,
Basal ganglia circuitry
2021
Parkinson’s disease (PD), or paralysis agitans, is a common neurodegenerative disease characterized by dopaminergic deprivation in the basal ganglia because of neuronal loss in the substantia nigra pars compacta. Clinically, PD apparently involves both hypokinetic (e.g. akinetic rigidity) and hyperkinetic (e.g. tremor/propulsion) symptoms. The symptomatic pathogenesis, however, has remained elusive. The recent success of deep brain stimulation (DBS) therapy applied to the subthalamic nucleus (STN) or the globus pallidus pars internus indicates that there are essential electrophysiological abnormalities in PD. Consistently, dopamine-deprived STN shows excessive burst discharges. This proves to be a central pathophysiological element causally linked to the locomotor deficits in PD, as maneuvers (such as DBS of different polarities) decreasing and increasing STN burst discharges would decrease and increase the locomotor deficits, respectively. STN bursts are not so autonomous but show a “relay” feature, requiring glutamatergic synaptic inputs from the motor cortex (MC) to develop. In PD, there is an increase in overall MC activities and the corticosubthalamic input is enhanced and contributory to excessive burst discharges in STN. The increase in MC activities may be relevant to the enhanced beta power in local field potentials (LFP) as well as the deranged motor programming at the cortical level in PD. Moreover, MC could not only drive erroneous STN bursts, but also be driven by STN discharges at specific LFP frequencies (~ 4 to 6 Hz) to produce coherent tremulous muscle contractions. In essence, PD may be viewed as a disorder with deranged rhythms in the cortico-subcortical re-entrant loops, manifestly including STN, the major component of the oscillating core, and MC, the origin of the final common descending motor pathways. The configurations of the deranged rhythms may play a determinant role in the symptomatic pathogenesis of PD, and provide insight into the mechanism underlying normal motor control. Therapeutic brain stimulation for PD and relevant disorders should be adaptively exercised with in-depth pathophysiological considerations for each individual patient, and aim at a final normalization of cortical discharge patterns for the best ameliorating effect on the locomotor and even non-motor symptoms.
Journal Article
Anomalous enhancement of resurgent Na+ currents at high temperatures by SCN9A mutations underlies the episodic heat-enhanced pain in inherited erythromelalgia
2019
Inherited erythromelalgia (IEM), caused by mutations in Na
v
1.7 channel is characterized by episodic neuropathic pain triggered especially by warm temperature. However, the mechanism underlying the temperature–dependent episodic attacks of IEM remains elusive. We investigated the electrophysiological effect of temperature changes on Na
v
1.7 channels with three different mutations, p.I136V, p. I848T, and p.V1316A, both
in vitro
and
in vivo
.
In vitro b
iophysical studies of the mutant channels show consistent temperature-dependent enhancement of the relative resurgent currents if normalized to the transient currents, as well as temperature-dependent changes in the time to peak and the kinetics of decay of the resurgent currents, but no congruent temperature–dependent changes in steady–state parameters such as shift of activation/inactivation curves and changes of the absolute size of the window or resurgent currents.
In vivo
nerve excitability tests (NET) in IEM patients reveal the essentially normal indices of NET at a single stimulus. However, there are evident abnormalities if assessed with preconditioning pulses, such as the decrease of threshold elevation in hyperpolarizing threshold electrotonus (50–100 ms), the increase of inward rectification in current–voltage curve, and the increase of refractoriness at the interpulse interval of 2–6 ms in recovery cycle, probably also implicating derangements in temperature dependence of inactivation and of recovery from inactivation in the mutant channels. The pathogenesis of heat–enhanced pain in IEM could be attributed to deranged temperature dependence of Na
v
1.7 channels responsible for the genesis of resurgent currents.
Journal Article
Changes of Resurgent Na+ Currents in the Nav1.4 Channel Resulting from an SCN4A Mutation Contributing to Sodium Channel Myotonia
by
Lee, Ming-Jen
,
Lai, Hsing-Jung
,
Lin, Pi-Chen
in
Genotype & phenotype
,
Musculoskeletal system
,
Mutation
2020
Myotonia congenita (MC) is a rare disorder characterized by stiffness and weakness of the limb and trunk muscles. Mutations in the SCN4A gene encoding the alpha-subunit of the voltage-gated sodium channel Nav1.4 have been reported to be responsible for sodium channel myotonia (SCM). The Nav1.4 channel is expressed in skeletal muscles, and its related channelopathies affect skeletal muscle excitability, which can manifest as SCM, paramyotonia and periodic paralysis. In this study, the missense mutation p.V445M was identified in two individual families with MC. To determine the functional consequences of having a mutated Nav1.4 channel, whole-cell patch-clamp recording of transfected Chinese hamster ovary cells was performed. Evaluation of the transient Na+ current found that a hyperpolarizing shift occurs at both the activation and inactivation curves with an increase of the window currents in the mutant channels. The Nav1.4 channel’s co-expression with the Navβ4 peptide can generate resurgent Na+ currents at repolarization following a depolarization. The magnitude of the resurgent currents is higher in the mutant than in the wild-type (WT) channel. Although the decay kinetics are comparable between the mutant and WT channels, the time to the peak of resurgent Na+ currents in the mutant channel is significantly protracted compared with that in the WT channel. These findings suggest that the p.V445M mutation in the Nav1.4 channel results in an increase of both sustained and resurgent Na+ currents, which may contribute to hyperexcitability with repetitive firing and is likely to facilitate recurrent myotonia in SCM patients.
Journal Article
The Significance and Mechanism of Cerebral Enlarged Perivascular Space in Amyotrophic Lateral Sclerosis
2025
Enlarged perivascular spaces (EPVS) are MRI markers of impaired glymphatic clearance and have been associated with neurodegenerative diseases. However, their clinical significance in amyotrophic lateral sclerosis (ALS) and underlying mechanisms remain poorly understood. This study investigated the prevalence, clinical relevance, and pathophysiological basis of EPVS in ALS. MRI data from 114 ALS patients and 119 matched controls were analyzed, with high-degree EPVS defined as more than 20 visible spaces. High-degree EPVS in the centrum semiovale (CSO) was more prevalent in ALS patients (49.1%) than in controls (15.1%, p < 0.001). Age, male sex, and ALS diagnosis were independent predictors, while disease severity and aggressiveness were not associated. ALS patients with high-degree CSO-EPVS were older at disease onset and MRI but showed similar clinical progression. In SOD1/G93A ALS mice, cerebral perivascular spaces were significantly enlarged at 5 months compared to wild-type and younger ALS mice. Cervical lymphatic ligation promoted misfolded SOD1 accumulation in motor neurons and cerebral vessels, further increasing perivascular space width without altering motor function. These findings suggest that about half of ALS patients exhibit high-degree CSO-EPVS, reflecting impaired protein clearance rather than disease aggressiveness.
Journal Article
AAV-NRIP gene therapy ameliorates motor neuron degeneration and muscle atrophy in ALS model mice
by
Chen, Hsin-Hsiung
,
Tsao, Yeou-Ping
,
Tsai, Li-Kai
in
Amyotrophic Lateral Sclerosis - genetics
,
Amyotrophic Lateral Sclerosis - metabolism
,
Amyotrophic Lateral Sclerosis - pathology
2024
Background
Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS.
Methods
We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human
NRIP
gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice.
Results
SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice.
Conclusions
AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.
Journal Article
The Innovative Role of Nuclear Receptor Interaction Protein in Orchestrating Invadosome Formation for Myoblast Fusion
2024
Background Nuclear receptor interaction protein (NRIP) is versatile and engages with various proteins to execute its diverse biological function. NRIP deficiency was reported to cause small myofibre size in adult muscle regeneration, indicating a crucial role of NRIP in myoblast fusion. Methods The colocalization and interaction of NRIP with actin were investigated by immunofluorescence and immunoprecipitation assay, respectively. The participation of NRIP in myoblast fusion was demonstrated by cell fusion assay and time‐lapse microscopy. The NRIP mutants were generated for mechanism study in NRIP‐null C2C12 (termed KO19) cells and muscle‐specific NRIP knockout (NRIP cKO) mice. A GEO profile database was used to analyse NRIP expression in Duchenne muscular dystrophy (DMD) patients. Results In this study, we found that NRIP directly and reciprocally interacted with actin both in vitro and in cells. Immunofluorescence microscopy showed that the endogenous NRIP colocalized with components of invadosome, such as actin, Tks5, and cortactin, at the tips of cells during C2C12 differentiation. The KO19 cells were generated and exhibited a significant deficit in myoblast fusion compared with wild‐type C2C12 cells (3.16% vs. 33.67%, p < 0.005). Overexpressed NRIP in KO19 cells could rescue myotube formation compared with control (3.37% vs. 1.00%, p < 0.01). We further confirmed that NRIP directly participated in cell fusion by using a cell–cell fusion assay. We investigated the mechanism of invadosome formation for myoblast fusion, which depends on NRIP–actin interaction, by analysing NRIP mutants in NRIP‐null cells. Loss of actin‐binding of NRIP reduced invadosome (enrichment ratio, 1.00 vs. 2.54, p < 0.01) and myotube formation (21.82% vs. 35.71%, p < 0.05) in KO19 cells and forced NRIP expression in KO19 cells and muscle‐specific NRIP knockout (NRIP cKO) mice increased myofibre size compared with controls (over 1500 μm2, 61.01% vs. 20.57%, p < 0.001). We also found that the NRIP mRNA level was decreased in DMD patients compared with healthy controls (18 072 vs. 28 289, p < 0.001, N = 10 for both groups). Conclusions NRIP is a novel actin‐binding protein for invadosome formation to induce myoblast fusion.
Journal Article
The Temporal Profiles of Changes in Nerve Excitability Indices in Familial Amyloid Polyneuropathy
by
Hsieh, Sung-Tsang
,
Chao, Chi-Chao
,
Lee, Ming-Jen
in
Aged
,
Amyloid Neuropathies, Familial - genetics
,
Amyloid Neuropathies, Familial - pathology
2015
Familial amyloid polyneuropathy (FAP) caused by a mutation in transthyretin (TTR) gene is an autosomal dominant inherited disorder. The aim of this study is to explore the pathophysiological mechanism of FAP. We prospectively recruited 12 pauci-symptomatic carriers, 18 patients who harbor a TTR mutation, p.A97S, and two-age matched control groups. Data of nerve excitability test (NET) from ulnar motor and sensory axons were collected.NET study of ulnar motor axons of patients shows increased threshold and rheobase, reduced threshold elevation during hyperpolarizing threshold electrotonus (TE), and increased refractoriness. In sensory nerve studies, there are increased threshold reduction in depolarizing TE, lower slope of recovery and delayed time to overshoot after hyperpolarizing TE, increased refractoriness and superexcitability in recovery cycle. NET profiles obtained from the ulnar nerve of carriers show the increase of threshold and rheobase, whereas no significant threshold changes in hyperpolarizing TE and superexcitability. The regression models demonstrate that the increase of refractoriness and prolonged relative refractory period are correlated to the disease progression from carriers to patients. The marked increase of refractoriness at short-width stimulus suggests a defect in sodium current which may represent an early, pre-symptomatic pathophysiological change in TTR-FAP. Focal disruption of basal lamina and myelin may further increase the internodal capacity, manifested by the lower slope of recovery and delayed time to overshoot after hyperpolarization TE as well as the increase of superexcitability. NET could therefore make a pragmatic tool for monitoring disease progress from the very early stage of TTR-FAP.
Journal Article
Motor cortex stimulation ameliorates parkinsonian locomotor deficits: effectual and mechanistic differences from subthalamic modulation
by
Chen, Chia-Hsiang
,
Ngan, Chen Yuan
,
Yang, Cheng-Kai
in
631/378/1689/1718
,
631/378/2632
,
631/378/2632/1323
2025
Subthalamic deep brain stimulation (STN DBS) has been a therapeutic choice for Parkinson’s disease (PD). We found that epidural motor cortex stimulation (MCS) with sustained positive (hyperpolarizing) currents could also consistently ameliorate the locomotor deficits in parkinsonian animals, rectifying the pathological paucity in both discharging unit varieties and movement-dependent spatiotemporal activity pattern changes in motor cortex (MC). Mechanistically, MCS hyperpolarizes both glutamatergic pyramidal neurons (PN) and GABAergic interneurons (IN) and consequently partly relieves PN from IN’s control. MC discharging units are thus enlarged with enhanced PN burst discharges against a relatively silenced background, presumably compensating for the hypoactive striatal selection to restore the MC activity changes upon movement. Behaviorally, MCS retains interim short pauses like normal locomotor behaviors, in contrast to the propensity of abnormal “restlessness” with STN DBS. Individually designed MCS, alone or in combination with STN DBS and dopaminergic therapy, may provide an optimal therapeutic approach for PD.
Journal Article
The Biophysical Basis Underlying Gating Changes in the p.V1316A Mutant Nav1.7 Channel and the Molecular Pathogenesis of Inherited Erythromelalgia
by
Lee, Ming-Jen
,
Lai, Hsing-Jung
,
Kuo, Chung-Chin
in
Biology and Life Sciences
,
Medicine and Health Sciences
,
Physical Sciences
2016
The Nav1.7 channel critically contributes to the excitability of sensory neurons, and gain-of-function mutations of this channel have been shown to cause inherited erythromelalgia (IEM) with neuropathic pain. In this study, we report a case of a severe phenotype of IEM caused by p.V1316A mutation in the Nav1.7 channel. Mechanistically, we first demonstrate that the Navβ4 peptide acts as a gating modifier rather than an open channel blocker competing with the inactivating peptide to give rise to resurgent currents in the Nav1.7 channel. Moreover, there are two distinct open and two corresponding fast inactivated states in the genesis of resurgent Na+ currents. One is responsible for the resurgent route and practically existent only in the presence of Navβ4 peptide, whereas the other is responsible for the \"silent\" route of recovery from inactivation. In this regard, the p.V1316A mutation makes hyperpolarization shift in the activation curve, and depolarization shift in the inactivation curve, vividly uncoupling inactivation from activation. In terms of molecular gating operation, the most important changes caused by the p.V1316A mutation are both acceleration of the transition from the inactivated states to the activated states and deceleration of the reverse transition, resulting in much larger sustained as well as resurgent Na+ currents. In summary, the genesis of the resurgent currents in the Nav1.7 channel is ascribable to the transient existence of a distinct and novel open state promoted by the Navβ4 peptide. In addition, S4-5 linker in domain III where V1316 is located seems to play a critical role in activation-inactivation coupling, chiefly via direct modulation of the transitional kinetics between the open and the inactivated states. The sustained and resurgent Na+ currents may therefore be correlatively enhanced by specific mutations involving this linker and relevant regions, and thus marked hyperexcitability in corresponding neural tissues as well as IEM symptomatology.
Journal Article
Deep brain stimulation rectifies the noisy cortex and irresponsive subthalamus to improve parkinsonian locomotor activities
by
Chung, Chih-Ching
,
Lee, Lan-Hsin Nancy
,
Lai, Hsing-Jung
in
631/378/1689/1718
,
631/378/2632/1323
,
Biomedical and Life Sciences
2022
The success of deep brain stimulation (DBS) therapy indicates that Parkinson’s disease is a brain rhythm disorder. However, the manifestations of the erroneous rhythms corrected by DBS remain to be established. We found that augmentation of α rhythms and α coherence between the motor cortex (MC) and the subthalamic nucleus (STN) is characteristically prokinetic and is decreased in parkinsonian rats. In multi-unit recordings, movement is normally associated with increased changes in spatiotemporal activities rather than overall spike rates in MC. In parkinsonian rats, MC shows higher spike rates at rest but less spatiotemporal activity changes upon movement, and STN burst discharges are more prevalent, longer lasting, and less responsive to MC inputs. DBS at STN rectifies the foregoing pathological MC-STN oscillations and consequently locomotor deficits, yet overstimulation may cause behavioral restlessness. These results indicate that delicate electrophysiological considerations at both cortical and subcortical levels should be exercised for optimal DBS therapy.
Journal Article